Nonoscillation theory of functional differential equtions with applications (New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNonoscillation theory of functional differential equtions with applications / R.P.Agarwal et al. - New York: Spinger, 2012. - xv, 520 p. - Bibliogr.: p.503-516. - Ind.: p.517-520. - Пер. загл.: Неосцилляционная теория функциональных дифференциальных уравнений с приложениями. - ISBN 978-1-4614-3454-2
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
1  Introduction to Oscillation Theory ........................... 1
   1.1  Introduction ............................................ 1
   1.2  Nonoscillation of Autonomous Delay Equations with
        Positive Coefficients ................................... 1
   1.3  Nonlinear Equations of Mathematical Biology ............. 9
        1.3.1  Linearization of Nonlinear Delay Equations ....... 9
        1.3.2  Hutchinson's Equation ........................... 10
        1.3.3  Lasota-Wazewska Equation ........................ 12
        1.3.4  Nicholson's Blowflies Equation .................. 13
        1.3.5  Mackey-Glass Equations .......................... 15
   1.4  Impulsive Equations .................................... 16
   1.5  Some Other Classes of Equations ........................ 18
   1.6  Discussion and Open Problems ........................... 20
2  Scalar Delay Differential Equations on Semiaxes ............. 23
   2.1  Introduction ........................................... 23
   2.2  Preliminaries .......................................... 24
   2.3  Nonoscillation Criteria ................................ 25
   2.4  Comparison Theorems .................................... 28
   2.5  Nonoscillation Conditions, Part 1 ...................... 32
   2.6  Nonoscillation Conditions, Part 2 ...................... 37
   2.7  Oscillation Conditions ................................. 43
   2.8  Estimations of Solutions ............................... 46
   2.9  Positivity of Solutions ................................ 49
   2.10 Slowly Oscillating Solutions for Delay Differential
        Equations .............................................. 51
   2.11 Stability and Nonoscillation ........................... 52
   2.12 Discussion and Open Problems ........................... 52
3  Scalar Delay Differential Equations on Semiaxis with
   Positive and Negative Coefficients .......................... 59
   3.1  Introduction ........................................... 59
   3.2  Nonoscillation Criteria ................................ 59
   3.1  Nonoscillation Conditions, Part 1 ...................... 66
   3.4  Nonoscillation Conditions, Part 2 ...................... 71
   3.5  Equations with an Oscillatory Coefficient .............. 77
   3.6  Discussion and Open Problems ........................... 79
4  Oscillation of Equations with Distributed Delays ............ 83
   4.1  Introduction ........................................... 83
   4.2  Preliminaries .......................................... 84
   4.3  Existence of a Positive Solution—General Results ....... 86
   4.4  Comparison Theorems .................................... 92
   4.5  Nonoscillation Criteria for Some Autonomous
        Integrodifferential Equations .......................... 97
   4.6  Explicit Nonoscillation and Oscillation Conditions .... 101
   4.7  Slowly Oscillating Solutions .......................... 107
   4.8  Equations with Positive and Negative Coefficients ..... 108
   4.9  Discussion and Open Problems .......................... 118
5  Scalar Advanced and Mixed Differential Equations on
   Semiaxes ................................................... 123
   5.1  Introduction .......................................... 123
   5.2  Advanced Equations .................................... 123
   5.3  Mixed Equations with Positive Coefficients ............ 132
   5.4  Mixed Equation with Negative Coefficients ............. 134
   5.5  Positive Delay Term, Negative Advanced Term ........... 135
   5.6  Negative Delay Term, Positive Advanced Term ........... 141
   5.7  Discussion and Open Problems .......................... 144
6  Neutral Differential Equations ............................. 149
   6.1  Introduction and Preliminaries ........................ 149
   6.2  Nonoscillation Criteria ............................... 151
   6.3  Efficient Nonoscillation Conditions ................... 156
   6.4  Explicit Oscillation Conditions ....................... 160
   6.5  Positivity of Solutions ............................... 164
   6.6  Slowly Oscillating Solutions .......................... 165
   6.7  Neutral Equations with Positive and Negative
        Coefficients .......................................... 166
   6.8  Discussion and Open Problems .......................... 168
7  Second-Order Delay Differential Equations .................. 171
   7.1  Introduction .......................................... 171
   7.2  Preliminaries ......................................... 171
   7.3  Nonoscillation Criteria ............................... 172
   7.4  Comparison Theorems ................................... 176
   7.5  Explicit Nonoscillation and Oscillation Conditions .... 182
   7.6  Slowly Oscillating Solutions .......................... 187
   7.7  Existence of a Positive Solution ...................... 188
   7.8  Discussion and Open Problems .......................... 190
8  Second-Order Delay Differential Equations with Damping
   Terms ...................................................... 193
   8.1  Introduction .......................................... 193
   8.2  Preliminaries ......................................... 193
   8.3  Nonoscillation Criteria ............................... 195
   8.4  Comparison Theorems ................................... 200
   8.5  Explicit Nonoscillation Conditions .................... 203
   8.6  Discussion and Open Problems .......................... 204
9  Vector Delay Differential Equations ........................ 207
   9.1  Introduction .......................................... 207
   9.2  Preliminaries ......................................... 208
   9.3  Main Results .......................................... 210
   9.4  Comparison Results .................................... 214
   9.5  Higher-Order Scalar Delay Differential Equations ...... 217
   9.6  Positivity and Solution Estimates ..................... 220
   9.7  Positive Solutions and Stability ...................... 223
   9.8  Systems of Differential Equations with a Distributed
        Delay ................................................. 229
        9.8.1  Nonnegativity of Fundamental Matrices .......... 229
        9.8.2  Comparison Results and Positivity of
               Solutions ...................................... 232
        9.8.3  Solution Estimates ............................. 233
        9.8.4  Nonoscillation and Stability ................... 236
   9.9  Discussion and Open Problems .......................... 238
10 Linearization Methods for Nonlinear Equations with
   a Distributed Delay ........................................ 241
   10.1 Introduction .......................................... 241
   10.2 Preliminaries ......................................... 241
   10.3 Linearized Oscillation ................................ 244
   10.4 Applications .......................................... 248
        10.4.1 Logistic Equation .............................. 249
        10.4.2 Lasota-Wazewska Equation ....................... 250
        10.4.3 Nicholson's Blowflies Equation ................. 253
   10.5 "Mean Value Theorem" for Equations with
        a Distributed Delay ................................... 258
   10.6 Discussion and Open Problems .......................... 261
11 Nonlinear Models—Modifications of Delay Logistic
   Equations .................................................. 263
   11.1 Introduction .......................................... 263
   11.2 Generalized Logistic Equation with Several Delays ..... 265
   11.3 Multiplicative Delay Logistic Equation ................ 277
        11.3.1 Preliminaries .................................. 277
        11.3.2 Nonoscillation Criteria ........................ 278
        11.3.3 Multiplicative Logistic Equation—Main Results .. 281
   11.4  Discussion and Open Problems ......................... 282
12 First-Order Linear Delay Impulsive Differential Equations .. 285
   12.1 Introduction .......................................... 285
   12.2 Preliminaries ......................................... 286
   12.3 Nonoscillation Criteria for Impulsive Equations ....... 287
   12.4 Explicit Nonoscillation Tests and Comparison
        Theorems .............................................. 292
   12.5 Reduction to Equations Without Impulses ............... 295
   12.6 Impulsive Equations with a Distributed Delay .......... 296
   12.7 Discussion and Open Problems .......................... 299
13 Second-Order Linear Delay Impulsive Differential
   Equations .................................................. 301
   13.1 Introduction .......................................... 301
   13.2 Preliminaries ......................................... 302
   13.3 Nonoscillation Criteria ............................... 303
   13.4 Comparison Theorems ................................... 308
   13.5 Explicit Nonoscillation and Oscillation Conditions .... 309
   13.6 Impulsive Equations with Damping Terms ................ 315
   13.7 Discussion and Open Problems .......................... 318
14 Linearized Oscillation Theory for Nonlinear Delay
   Impulsive Equations ........................................ 319
   14.1 Introduction .......................................... 319
   14.2 Preliminaries ......................................... 319
   14.3 Oscillation and Nonoscillation ........................ 321
   14.4 Applications to Equations of Mathematical Biology ..... 329
        14.4.1 Logistic Equation: Theoretical Results ......... 329
        14.4.2 Logistic Equation: Numerical Simulations ....... 333
        14.4.3 Generalized Lasota-Wazewska Equation ........... 334
   14.5 Discussion and Open Problems .......................... 336
15 Maximum Principles and Nonoscillation Intervals ............ 339
   15.1 Introduction .......................................... 339
   15.2 Preliminaries ......................................... 340
   15.3 Maximum Principles in the Case of Positive Volterra
        Operator (-B) ......................................... 346
   15.4 Nonoscillation and Positivity of Green's Functions
        for Positive Volterra Operator В ...................... 350
   15.5 Nonoscillation on the Semiaxis ........................ 356
   15.6 Positivity Tests for Green's Functions Through
        Choice of v(t) ........................................ 357
   15.7 The Generalized Periodic Problem for Positive
        Volterra Operator В ................................... 360
   15.8 Regular Behavior of the Green's Function to a
        One-Point Boundary Value Problem ...................... 362
   15.9 Positivity of Green's Functions for Equations
        Including Difference of Positive Operators ............ 363
   15.10 Positivity of the Cauchy and Green's Functions ....... 367
   15.11 Equations with an Oscillating Coefficient ............ 376
   15.12 Positivity of the Cauchy Function and Exponential
         Stability ............................................ 384
   15.13 General Boundary Value Problems ...................... 388
   15.14 Discussion and Open Problems ......................... 391
16 Systems of Functional Differential Equations on Finite
   Intervals .................................................. 399
   16.1 Introduction .......................................... 399
   16.2 Nonnegativity and Nonpositivity of Green's Matrices ... 401
   16.3 Positivity of the n-th Row of the Cauchy Matrix ....... 408
   16.4 Positivity of the Fixed и-th Row of Green's Matrices .. 417
   16.5 Nonpositivity Conditions for the n-th Row of Green's
        Matrices .............................................. 420
   16.6 Discussion and Open Problems .......................... 426
17 Nonoscillation Intervals for n-th-Order Equations .......... 429
   17.1 Introduction .......................................... 429
   17.2 Homogeneous Functional Differential Equations of the
        n-th Order ............................................ 430
   17.3 Wronskian of the Fundamental System ................... 432
   17.4 Nonoscillation of Functional Differential Equations ... 434
   17.5 Nonoscillation and Regular Behavior of Green's
        Functions ............................................. 437
   17.6 Tests for Differential Equations with Deviating
        Arguments ............................................. 444
   17.7 Discussion and Open Problems .......................... 451

Appendix A  Useful Theorems from Analysis ..................... 455
   A.1  Vector Spaces ......................................... 455
   A.2  Functional Spaces ..................................... 456
   A.3  Sets in Functional Spaces ............................. 458
   A.4  Linear Operators in Functional Spaces ................. 458
   A.5  Nonlinear Operators ................................... 462
   A.6  Gronwall-Bellman and Coppel Inequalities .............. 463
Appendix В  Existence and Uniqueness Theorems, Solution
   Representations ............................................ 465
   B.l  Linear Functional Differential Equations .............. 465
        В.1.1 Differential Equations with Several
              Concentrated Delays ............................. 465
        B.l.2 Mixed Equations with an Infinite Number of
              Delays .......................................... 468
        B.1.3 Equations with a Distributed Delay .............. 472
        B.l.4 Equations of Neutral Type ....................... 475
        B.l.5 Higher-Order Scalar Delay Differential
              Equations ....................................... 477
   B.2  Estimations of the Fundamental Matrix ................. 480
   B.3  Nonlinear Delay Differential Equations ................ 482
   B.4  Linear Delay Impulsive Differential Equations ......... 490
        B.4.1  First-Order Impulsive Equations ................ 490
        B.4.2 Second-Order Impulsive Equations ................ 494
   B.5  Bohl-Perron Theorems .................................. 499
   References ................................................. 503

Index ......................................................... 517


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:38 2019. Размер: 18,356 bytes.
Посещение N 1739 c 05.08.2014