Anthony M. Linear algebra: concepts and methods (Cambridge; New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAnthony M. Linear algebra: concepts and methods / M.Anthony, M.Harvey. - Cambridge; New York: Cambridge univ. press, 2012. - xiv, 431 p.: ill. - Ind.: p.513-516. - Пер. загл.: Линейная алгебра: концепции и методы. - ISBN 978-0-521-27948-2
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
   Preliminaries: before we begin ............................... 1
   Sets and set notation ........................................ 1
   Numbers ...................................................... 2
   Mathematical terminology ..................................... 3
   Basic algebra ................................................ 4
   Trigonometry ................................................. 7
   A little bit of logic ........................................ 8
1  Matrices and vectors ........................................ 10
   1.1  What is a matrix? ...................................... 10
   1.2  Matrix addition and scalar multiplication .............. 11
   1.3  Matrix multiplication .................................. 12
   1.4  Matrix algebra ......................................... 14
   1.5  Matrix inverses ........................................ 16
   1.6  Powers of a matrix ..................................... 20
   1.7  The transpose and symmetric matrices ................... 20
   1.8  Vectors in fig.2n .......................................... 23
   1.9  Developing geometric insight ........................... 27
   1.10 Lines .................................................. 33
   1.11 Planes in fig.2n ........................................... 39
   1.12 Lines and hyperplanes in fig.2n ............................ 46
   1.13 Learning outcomes ...................................... 47
   1.14 Comments on activities ................................. 48
   1.15 Exercises .............................................. 53
   1.16 Problems ............................................... 55
2  Systems of linear equations ................................. 59
   2.1  Systems of linear equations ............................ 59
   2.2  Row operations ......................................... 62
   2.3  Gaussian elimination ................................... 64
   2.4  Homogeneous systems and null space ..................... 75
   2.5  Learning outcomes ...................................... 81
   2.6  Comments on activities ................................. 82
   2.7  Exercises .............................................. 84
   2.8  Problems ............................................... 86
3  Matrix inversion and determinants ........................... 90
   3.1  Matrix inverse using row operations .................... 90
   3.2  Determinants ........................................... 98
   3.3  Results on determinants ............................... 104
   3.4  Matrix inverse using cofactors ........................ 113
   3.5  Leontief input-output analysis ........................ 119
   3.6  Learning outcomes ..................................... 121
   3.7  Comments on activities ................................ 122
   3.8  Exercises ............................................. 125
   3.9  Problems .............................................. 128
4  Rank, range and linear equations ........................... 131
   4.1  The rank of a matrix .................................. 131
   4.2  Rank and systems of linear equations .................. 133
   4.3  Range ................................................. 139
   4.4  Learning outcomes ..................................... 142
   4.5  Comments on activities ................................ 142
   4.6  Exercises ............................................. 144
   4.7  Problems .............................................. 146
5  Vector spaces .............................................. 149
   5.1  Vector spaces ......................................... 149
   5.2  Subspaces ............................................. 154
   5.3  Linear span ........................................... 160
   5.4  Learning outcomes ..................................... 164
   5.5  Comments on activities ................................ 164
   5.6  Exercises ............................................. 168
   5.7  Problems .............................................. 170
6  Linear independence, bases and dimension ................... 172
   6.1  Linear independence ................................... 172
   6.2  Bases ................................................. 181
   6.3  Coordinates ........................................... 185
   6.4  Dimension ............................................. 186
   6.5  Basis and dimension in fig.2n ............................. 191
   6.6  Learning outcomes ..................................... 199
   6.7  Comments on activities ................................ 199
   6.8  Exercises ............................................. 202
   6.9  Problems .............................................. 205
7  Linear transformations and change of basis ................. 210
   7.1  Linear transformations ................................ 210
   7.2  Range and null space .................................. 220
   7.3  Coordinate change ..................................... 223
   7.4  Change of basis and similarity ........................ 229
   7.5  Learning outcomes ..................................... 235
   7.6  Comments on activities ................................ 235
   7.7  Exercises ............................................. 239
   7.8  Problems .............................................. 242
8  Diagonalisation ............................................ 247
   8.1  Eigenvalues and eigenvectors .......................... 247
   8.2  Diagonalisation of a square matrix .................... 256
   8.3  When is diagonalisation possible? ..................... 263
   8.4  Learning outcomes ..................................... 272
   8.5  Comments on activities ................................ 273
   8.6  Exercises ............................................. 274
   8.7  Problems .............................................. 276
9  Applications of diagonalisation ............................ 279
   9.1  Powers of matrices .................................... 279
   9.2  Systems of difference equations ....................... 282
   9.3  Linear systems of differential equations .............. 296
   9.4  Learning outcomes ..................................... 303
   9.5  Comments on activities ................................ 303
   9.6  Exercises ............................................. 305
   9.7  Problems .............................................. 308
10 Inner products and orthogonality ........................... 312
   10.1 Inner products ........................................ 312
   10.2 Orthogonality ......................................... 316
   10.3 Orthogonal matrices ................................... 319
   10.4 Gram-Schmidt orthonormalisation process ............... 321
   10.5 Learning outcomes ..................................... 323
   10.6 Comments on activities ................................ 324
   10.7 Exercises ............................................. 325
   10.8 Problems .............................................. 326
11 Orthogonal diagonalisation and its applications ............ 329
   11.1 Orthogonal diagonalisation of symmetric matrices ...... 329
   11.2 Quadratic forms ....................................... 339
   11.3 Learning outcomes ..................................... 355
   11.4 Comments on activities ................................ 356
   11.5 Exercises ............................................. 358
   11.6 Problems .............................................. 360
12 Direct sums and projections ................................ 364
   12.1 The direct sum of two subspaces ....................... 364
   12.2 Orthogonal complements ................................ 367
   12.3 Projections ........................................... 372
   12.4 Characterising projections and orthogonal
        projections ........................................... 374
   12.5 Orthogonal projection onto the range of a matrix ...... 376
   12.6 Minimising the distance to a subspace ................. 379
   12.7 Fitting functions to data: least squares
        approximation ......................................... 380
   12.8 Learning outcomes ..................................... 383
   12.9 Comments on activities ................................ 384
   12.10 Exercises ............................................ 385
   12.11 Problems ............................................. 386
13 Complex matrices and vector spaces ......................... 389
   13.1 Complex numbers ....................................... 389
   13.2 Complex vector spaces ................................. 398
   13.3 Complex matrices ...................................... 399
   13.4 Complex inner product spaces .......................... 401
   13.5 Hermitian conjugates .................................. 407
   13.6 Unitary diagonalisation and normal matrices ........... 412
   13.7 Spectral decomposition ................................ 415
   13.8 Learning outcomes ..................................... 420
   13.9 Comments on activities ................................ 421
   13.10 Exercises ............................................ 424
   13.11 Problems ............................................. 426
   Comments on exercises ...................................... 431

Index ......................................................... 513


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:36 2019. Размер: 13,396 bytes.
Посещение N 1635 c 05.08.2014