Polyanin A.D. Handbook of integral equations (Boca Raton, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPolyanin A.D. Handbook of integral equations / A.D.Polyanin, A.V. Manzhirov. - 2nd ed. - Boca Raton: Chapman & Hall/CRC, 2008. - xxxiii, 1108 p.: ill. - (Handbooks of mathematical equations). - Bibliogr.: p.1071-1108. - ISBN 978-1-58488-507-8
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Authors ...................................................... xxix
Preface ...................................................... xxxi
Some Remarks and Notation .................................. xххііі

Part I. Exact Solutions of Integral Equations

1    Linear Equations of the First Kind with Variable
     Limit of Integration ....................................... 3
1.1  Equations Whose Kernels Contain Power-Law Functions ........ 4
     1.1-1  Kernels Linear in the Arguments x and t ............. 4
     1.1-2  Kernels Quadratic in the Arguments x and t .......... 4
     1.1-3  Kernels Cubic in the Arguments x and t .............. 5
     1.1-4  Kernels Containing Higher-Order Polynomials in x
            and t ............................................... 6
     1.1-5  Kernels Containing Rational Functions ............... 7
     1.1-6  Kernels Containing Square Roots ..................... 9
     1.1-7  Kernels Containing Arbitrary Powers ................ 12
     1.1-8  Two-Dimensional Equation of the Abel Type .......... 15
1.2  Equations Whose Kernels Contain Exponential Functions ..... 15
     1.2-1  Kernels Containing Exponential Functions ........... 15
     1.2-2  Kernels Containing Power-Law and Exponential
            Functions .......................................... 19
1.3  Equations Whose Kernels Contain Hyperbolic Functions ...... 22
     1.3-1  Kernels Containing Hyperbolic Cosine ............... 22
     1.3-2  Kernels Containing Hyperbolic Sine ................. 28
     1.3-3  Kernels Containing Hyperbolic Tangent .............. 36
     1.3-4  Kernels Containing Hyperbolic Cotangent ............ 38
     1.3-5  Kernels Containing Combinations of Hyperbolic
            Functions .......................................... 39
1.4  Equations Whose Kernels Contain Logarithmic Functions ..... 42
     1.4-1  Kernels Containing Logarithmic Functions ........... 42
     1.4-2  Kernels Containing Power-Law and Logarithmic
            Functions .......................................... 45
1.5  Equations Whose Kernels Contain Trigonometric Functions ... 46
     1.5-1  Kernels Containing Cosine .......................... 46
     1.5-2  Kernels Containing Sine ............................ 52
     1.5-3  Kernels Containing Tangent ......................... 60
     1.5-4  Kernels Containing Cotangent ....................... 62
     1.5-5  Kernels Containing Combinations of Trigonometric
            Functions .......................................... 63
1.6  Equations Whose Kernels Contain Inverse Trigonometric
     Functions ................................................. 66
     1.6-1  Kernels Containing Arccosine ....................... 66
     1.6-2  Kernels Containing Arcsine ......................... 68
     1.6-3  Kernels Containing Arctangent ...................... 70
     1.6-4  Kernels Containing Arccotangent .................... 71
1.7  Equations Whose Kernels Contain Combinations of
     Elementary Functions ...................................... 73
     1.7-1  Kernels Containing Exponential and Hyperbolic
            Functions .......................................... 73
     1.7-2  Kernels Containing Exponential and Logarithmic
            Functions .......................................... 77
     1.7-3  Kernels Containing Exponential and Trigonometric
            Functions .......................................... 78
     1.7-4  Kernels Containing Hyperbolic and Logarithmic
            Functions .......................................... 83
     1.7-5  Kernels Containing Hyperbolic and Trigonometric
            Functions .......................................... 84
     1.7-6  Kernels Containing Logarithmic and Trigonometric
            Functions .......................................... 85
1.8  Equations Whose Kernels Contain Special Functions ......... 86
     1.8-1  Kernels Containing Error Function or Exponential
            Integral ........................................... 86
     1.8-2  Kernels Containing Sine and Cosine Integrals ....... 87
     1.8-3  Kernels Containing Fresnel Integrals ............... 87
     1.8-4  Kernels Containing Incomplete Gamma Functions ...... 88
     1.8-5  Kernels Containing Bessel Functions ................ 88
     1.8-6  Kernels Containing Modified Bessel Functions ....... 97
     1.8-7  Kernels Containing Legendre Polynomials ........... 105
     1.8-8  Kernels Containing Associated Legendre Functions .. 107
     1.8-9  Kernels Containing Confluent Hypergeometric
            Functions ......................................... 107
     1.8-10 Kernels Containing Hermite Polynomials ............ 108
     1.8-11 Kernels Containing Chebyshev Polynomials .......... 109
     1.8-12 Kernels Containing Laguerre Polynomials ........... 110
     1.8-13 Kernels Containing Jacobi Theta Functions ......... 110
     1.8-14 Kernels Containing Other Special Functions ........ 111
1.9  Equations Whose Kernels Contain Arbitrary Functions ...... 111
     1.9-1  Equations with Degenerate Kernel: K(x,t) =
            g1(x)h1(t) + g2(x)h2(t) ............................ 111
     1.9-2  Equations with Difference Kernel: K(x,t) =
            K(x-t) ............................................ 114
     1.9-3  Other Equations ................................... 122
1.10 Some Formulas and Transformations ........................ 124

2    Linear Equations of the Second Kind with Variable Limit
     of Integration ........................................... 127
2.1  Equations Whose Kernels Contain Power-Law Functions ...... 127
     2.1-1  Kernels Linear in the Arguments x and t ........... 127
     2.1-2  Kernels Quadratic in the Arguments x and t ........ 129
     2.1-3  Kernels Cubic in the Arguments x and t ............ 132
     2.1-4  Kernels Containing Higher-Order Polynomials in x
            and t ............................................. 133
     2.1-5  Kernels Containing Rational Functions ............. 136
     2.1-6  Kernels Containing Square Roots and Fractional
            Powers ............................................ 138
     2.1-7  Kernels Containing Arbitrary Powers ............... 139
2.2  Equations Whose Kernels Contain Exponential Functions .... 144
     2.2-1  Kernels Containing Exponential Functions .......... 144
     2.2-2  Kernels Containing Power-Law and Exponential
            Functions ......................................... 151
2.3  Equations Whose Kernels Contain Hyperbolic Functions ..... 154
     2.3-1  Kernels Containing Hyperbolic Cosine .............. 154
     2.3-2  Kernels Containing Hyperbolic Sine ................ 156
     2.3-3  Kernels Containing Hyperbolic Tangent ............. 161
     2.3-4  Kernels Containing Hyperbolic Cotangent ........... 162
     2.3-5  Kernels Containing Combinations of Hyperbolic
            Functions ......................................... 164
2.4  Equations Whose Kernels Contain Logarithmic Functions .... 164
     2.4-1  Kernels Containing Logarithmic Functions .......... 164
     2.4-2  Kernels Containing Power-Law and Logarithmic
            Functions ......................................... 165
2.5  Equations Whose Kernels Contain Trigonometric
     Functions ................................................ 166
     2.5-1  Kernels Containing Cosine ......................... 166
     2.5-2  Kernels Containing Sine ........................... 169
     2.5-3  Kernels Containing Tangent ........................ 174
     2.5-4  Kernels Containing Cotangent ...................... 175
     2.5-5  Kernels Containing Combinations of Trigonometric
            Functions ......................................... 176
2.6  Equations Whose Kernels Contain Inverse Trigonometric
     Functions ................................................ 176
     2.6-1  Kernels Containing Arccosine ...................... 176
     2.6-2  Kernels Containing Arcsine ........................ 177
     2.6-3  Kernels Containing Arctangent ..................... 178
     2.6-4  Kernels Containing Arccotangent ................... 178
2.7  Equations Whose Kernels Contain Combinations of
     Elementary Functions ..................................... 179
     2.7-1  Kernels Containing Exponential and Hyperbolic
            Functions ......................................... 179
     2.7-2  Kernels Containing Exponential and Logarithmic
            Functions ......................................... 180
     2.7-3  Kernels Containing Exponential and Trigonometric
            Functions ......................................... 181
     2.7-4  Kernels Containing Hyperbolic and Logarithmic
            Functions ......................................... 185
     2.7-5  Kernels Containing Hyperbolic and Trigonometric
            Functions ......................................... 186
     2.7-6  Kernels Containing Logarithmic and Trigonometric
            Functions ......................................... 187
2.8  Equations Whose Kernels Contain Special Functions ........ 187
     2.8-1  Kernels Containing Bessel Functions ............... 187
     2.8-2  Kernels Containing Modified Bessel Functions ...... 189
2.9  Equations Whose Kernels Contain Arbitrary Functions ...... 191
     2.9-1  Equations with Degenerate Kernel: K(x,t) =
            g1(x)h1(t) + ... + gn(x)hn(t) ................... 191
     2.9-2  Equations with Difference Kernel: K(x,t) =
            K(x-t) ............................................ 203
     2.9-3  Other Equations ................................... 212
2.10 Some Formulas and Transformations ........................ 215

3    Linear Equations of the First Kind with Constant Limits
     of Integration ........................................... 217
3.1  Equations Whose Kernels Contain Power-Law Functions ...... 217
     3.1-1  Kernels Linear in the Arguments x and t ........... 217
     3.1-2  Kernels Quadratic in the Arguments x and t ........ 219
     3.1-3  Kernels Containing Integer Powers of x and t or
            Rational Functions ................................ 220
     3.1-4  Kernels Containing Square Roots ................... 222
     3.1-5  Kernels Containing Arbitrary Powers ............... 223
     3.1-6  Equations Containing the Unknown Function of
            a Complicated Argument ............................ 227
     3.1-7  Singular Equations ................................ 228
3.2  Equations Whose Kernels Contain Exponential Functions .... 231
     3.2-1  Kernels Containing Exponential Functions of the
            Form ℮λӀx-tӀ ........................................ 231
     3.2-2  Kernels Containing Exponential Functions of the
            Forms ℮λx  and ℮μt  ................................ 234
     3.2-3  Kernels Containing Exponential Functions of the
            Form ℮λxt ......................................... 234
     3.2-4  Kernels Containing Power-Law and Exponential
            Functions ......................................... 236
     3.2-5  Kernels Containing Exponential Functions of the
            Form ℮λ(x±t)2  ...................................... 236
     3.2-6  Other Kernels ..................................... 237
3.3  Equations Whose Kernels Contain Hyperbolic Functions ..... 238
     3.3-1  Kernels Containing Hyperbolic Cosine .............. 238
     3.3-2  Kernels Containing Hyperbolic Sine ................ 238
     3.3-3  Kernels Containing Hyperbolic Tangent ............. 241
     3.3-4  Kernels Containing Hyperbolic Cotangent ........... 242
3.4  Equations Whose Kernels Contain Logarithmic Functions .... 242
     3.4-1  Kernels Containing Logarithmic Functions .......... 242
     3.4-2  Kernels Containing Power-Law and Logarithmic
            Functions ......................................... 244
     3.4-3  Equation Containing the Unknown Function of a
            Complicated Argument .............................. 246
3.5  Equations Whose Kernels Contain Trigonometric Functions .. 246
     3.5-1  Kernels Containing Cosine ......................... 246
     3.5-2  Kernels Containing Sine ........................... 247
     3.5-3  Kernels Containing Tangent ........................ 251
     3.5-4  Kernels Containing Cotangent ...................... 252
     3.5-5  Kernels Containing a Combination of
            Trigonometric Functions ........................... 252
     3.5-6  Equations Containing the Unknown Function of
            a Complicated Argument ............................ 254
     3.5-7  Singular Equations ................................ 255
3.6  Equations Whose Kernels Contain Combinations of
     Elementary Functions ..................................... 255
     3.6-1  Kernels Containing Hyperbolic and Logarithmic
            Functions ......................................... 255
     3.6-2  Kernels Containing Logarithmic and Trigonometric
            Functions ......................................... 256
     3.6-3  Kernels Containing Combinations of Exponential
            and Other Elementary Functions .................... 257
3.7  Equations Whose Kernels Contain Special Functions ........ 258
     3.7-1  Kernels Containing Error Function, Exponential
            Integral or Logarithmic Integral .................. 258
     3.7-2  Kernels Containing Sine Integrals, Cosine
            Integrals, or Fresnel Integrals ................... 258
     3.7-3  Kernels Containing Gamma Functions ................ 260
     3.7-4  Kernels Containing Incomplete Gamma Functions ..... 260
     3.7-5  Kernels Containing Bessel Functions of the First
            Kind .............................................. 261
     3.7-6  Kernels Containing Bessel Functions of the
            Second Kind ....................................... 264
     3.7-7  Kernels Containing Combinations of the Bessel
            Functions ......................................... 265
     3.7-8  Kernels Containing Modified Bessel Functions of
            the First Kind .................................... 266
     3.7-9  Kernels Containing Modified Bessel Functions of
            the Second Kind ................................... 266
     3.7-10 Kernels Containing a Combination of Bessel and
            Modified Bessel Functions ......................... 269
     3.7-11 Kernels Containing Legendre Functions ............. 270
     3.7-12 Kernels Containing Associated Legendre Functions .. 271
     3.7-13 Kernels Containing Kummer Confluent
            Hypergeometric Functions .......................... 272
     3.7-14 Kernels Containing Tricomi Confluent
            Hypergeometric Functions .......................... 274
     3.7-15 Kernels Containing Whittaker Confluent
            Hypergeometric Functions .......................... 274
     3.7-16 Kernels Containing Gauss Hypergeometric
            Functions ......................................... 276
     3.7-17 Kernels Containing Parabolic Cylinder Functions ... 276
     3.7-18 Kernels Containing Other Special Functions ........ 277
3.8  Equations Whose Kernels Contain Arbitrary Functions ...... 278
     3.8-1  Equations with Degenerate Kernel .................. 278
     3.8-2  Equations Containing Modulus ...................... 279
     3.8-3  Equations with Difference Kernel: K(x,t) =
            K(x-t) ............................................ 284
     3.8-4  Other Equations of the Form ∫αβ K(x,t)y(t)dt =
            F(x) .............................................. 285
     3.8-5  Equations of the Form ∫αβK(x,t)y(...)dt =
            F(x) .............................................. 289
3.9  Dual Integral Equations of the First Kind ................ 295
     3.9-1  Kernels Containing Trigonometric Functions ........ 295
     3.9-2  Kernels Containing Bessel Functions of the First
            Kind .............................................. 297
     3.9-3  Kernels Containing Bessel Functions of the
            Second Kind ....................................... 299
     3.9-4  Kernels Containing Legendre Spherical Functions
            of the First Kind, i2 = -1 ........................ 299

4    Linear Equations of the Second Kind with Constant
     Limits of Integration .................................... 301
4.1  Equations Whose Kernels Contain Power-Law Functions ...... 301
     4.1-1  Kernels Linear in the Arguments x and t ........... 301
     4.1-2  Kernels Quadratic in the Arguments x and t ........ 304
     4.1-3  Kernels Cubic in the Arguments x and t ............ 307
     4.1-4  Kernels Containing Higher-Order Polynomials in x
            and t ............................................. 311
     4.1-5  Kernels Containing Rational Functions ............. 314
     4.1-6  Kernels Containing Arbitrary Powers ............... 317
     4.1-7  Singular Equations ................................ 319
4.2  Equations Whose Kernels Contain Exponential Functions .... 320
     4.2-1  Kernels Containing Exponential Functions .......... 320
     4.2-2  Kernels Containing Power-Law and Exponential
            Functions ......................................... 326
4.3  Equations Whose Kernels Contain Hyperbolic Functions ..... 327
     4.3-1  Kernels Containing Hyperbolic Cosine .............. 327
     4.3-2  Kernels Containing Hyperbolic Sine ................ 329
     4.3-3  Kernels Containing Hyperbolic Tangent ............. 332
     4.3-4  Kernels Containing Hyperbolic Cotangent ........... 333
     4.3-5  Kernels Containing Combination of Hyperbolic
            Functions ......................................... 334
4.4  Equations Whose Kernels Contain Logarithmic Functions .... 334
     4.4-1  Kernels Containing Logarithmic Functions .......... 334
     4.4-2  Kernels Containing Power-Law and Logarithmic
            Functions ......................................... 335
4.5  Equations Whose Kernels Contain Trigonometric Functions .. 335
     4.5-1  Kernels Containing Cosine ......................... 335
     4.5-2  Kernels Containing Sine ........................... 337
     4.5-3  Kernels Containing Tangent ........................ 342
     4.5-4  Kernels Containing Cotangent ...................... 343
     4.5-5  Kernels Containing Combinations of Trigonometric
            Functions ......................................... 344
     4.5-6  Singular Equation ................................. 344
4.6  Equations Whose Kernels Contain Inverse Trigonometric
     Functions ................................................ 344
     4.6-1  Kernels Containing Arccosine ...................... 344
     4.6-2  Kernels Containing Arcsine ........................ 345
     4.6-3  Kernels Containing Arctangent ..................... 346
     4.6-4  Kernels Containing Arccotangent ................... 347
4.7  Equations Whose Kernels Contain Combinations of
     Elementary Functions ..................................... 348
     4.7-1  Kernels Containing Exponential and Hyperbolic
            Functions ......................................... 348
     4.7-2  Kernels Containing Exponential and Logarithmic
            Functions ......................................... 349
     4.7-3  Kernels Containing Exponential and Trigonometric
            Functions ......................................... 349
     4.7-4  Kernels Containing Hyperbolic and Logarithmic
            Functions ......................................... 351
     4.7-5  Kernels Containing Hyperbolic and Trigonometric
            Functions ......................................... 352
     4.7-6  Kernels Containing Logarithmic and Trigonometric
            Functions ......................................... 353
4.8  Equations Whose Kernels Contain Special Functions ........ 353
     4.8-1  Kernels Containing Bessel Functions ............... 353
     4.8-2  Kernels Containing Modified Bessel Functions ...... 355
4.9  Equations Whose Kernels Contain Arbitrary Functions ...... 357
     4.9-1  Equations with Degenerate Kernel: K(x,t) =
            g1(x)h1(t) + ... + gn(x)hn(t) ...................... 357
     4.9-2  Equations with Difference Kernel: K(x,t) =
            K(x-t) ............................................ 372
     4.9-3  Other Equations of the Form y(x) + ∫αbK(x,t)y(t)
            dt = F(x) ......................................... 374
     4.9-4  Equations of the Form y(x) +∫αbK(x,t)y(...)dt =
            F(x) .............................................. 381
4.10 Some Formulas and Transformations ........................ 390

5    Nonlinear Equations of the First Kind with Variable
     Limit of Integration ..................................... 393
5.1  Equations with Quadratic Nonlinearity That Contain
     Arbitrary Parameters ..................................... 393
     5.1-1  Equations of the Form ∫0x y(t)y(x-t)dt = ƒ(x) ...... 393
     5.1-2  Equations of the Form ∫0xK(x,t)y(t)y(x-t)dt =
            ƒ(x) .............................................. 395
     5.1-3  Equations of the Form ∫0xy(t)y(...)dt = ƒ(x) ....... 396
5.2  Equations with Quadratic Nonlinearity That Contain
     Arbitrary Functions ...................................... 397
     5.2-1  Equations of the Form ∫αxK(x,t)[Ay(t)+By2(t)]dt
            = ƒ(x) ............................................ 397
     5.2-2  Equations of the Form ∫αxK(x,t)y(t)y(αx+bt)dt =
            ƒ(x) .............................................. 398
5.3  Equations with Nonlinearity of General Form .............. 399
     5.3-1  Equations of the Form ∫αxK(x,t)ƒ(t,y(t))dt = 
            g(x) .............................................. 399
     5.3-2  Other Equations ................................... 401

6    Nonlinear Equations of the Second Kind with Variable
     Limit of Integration ..................................... 403
6.1  Equations with Quadratic Nonlinearity That Contain
     Arbitrary Parameters ..................................... 403
     6.1-1  Equations of the Form y(x) + ∫αxK(x,t)y2(t)dt =
            Fix) .............................................. 403
     6.1-2  Equations of the Form y(x) + ∫αx
            K(x,t)y(t)y(x-t)dt = F(x) ......................... 406
6.2  Equations with Quadratic Nonlinearity That Contain
     Arbitrary Functions ...................................... 406
     6.2-1  Equations of the Form y(x) + ∫αxK(x,t)y2(t)dt =
            F(x) .............................................. 406
     6.2-2  Other Equations ................................... 407
6.3  Equations with Power-Law Nonlinearity .................... 408
     6.3-1  Equations Containing Arbitrary Parameters ......... 408
     6.3-2  Equations Containing Arbitrary Functions .......... 410
6.4  Equations with Exponential Nonlinearity .................. 411
     6.4-1  Equations Containing Arbitrary Parameters ......... 411
     6.4-2  Equations Containing Arbitrary Functions .......... 413
6.5  Equations with Hyperbolic Nonlinearity ................... 414
     6.5-1  Integrands with Nonlinearity of the Form
            cosh[βy(t)] ....................................... 414
     6.5-2  Integrands with Nonlinearity of the Form
            sinh[βy(t)] ....................................... 415
     6.5-3  Integrands with Nonlinearity of the Form
            tanh[βy(t)] ....................................... 416
     6.5-4  Integrands with Nonlinearity of the Form
            coth[βy(t)] ....................................... 418
6.6  Equations with Logarithmic Nonlinearity .................. 419
     6.6-1  Integrands Containing Power-Law Functions of x
            and t ............................................. 419
     6.6-2  Integrands Containing Exponential Functions of x
            and t ............................................. 419
     6.6-3  Other Integrands .................................. 420
6.7  Equations with Trigonometric Nonlinearity ................ 420
     6.7-1  Integrands with Nonlinearity of the Form
            cos[(βy(t)] ....................................... 420
     6.7-2  Integrands with Nonlinearity of the Form
            sin[βy(t)] ........................................ 422
     6.7-3  Integrands with Nonlinearity of the Form
            tan[βy(t)] ........................................ 423
     6.7-4  Integrands with Nonlinearity of the Form
            cot[βy(t)] ........................................ 424
6.8  Equations with Nonlinearity of General Form .............. 425
     6.8-1  Equations of the Form y(x) + ∫αxK(x,t)G(y(t))dt =
            F(x) .............................................. 425
     6.8-2  Equations of the Form y(x) + ∫αxK(x-t)G(t,y(t))dt =
            F(x) .............................................. 428
     6.8-3  Other Equations ................................... 431

7    Nonlinear Equations of the First Kind with Constant
     Limits of Integration .................................... 433
7.1  Equations with Quadratic Nonlinearity That Contain
     Arbitrary Parameters ..................................... 433
     7.1-1  Equations of the Form ∫αbK(t)y(x)y(t)dt = F(x) .... 433
     7.1-2  Equations of the Form ∫αbK(t)y(t)y(xt)dt =
            F(x) .............................................. 435
     7.1-3  Other Equations ................................... 436
7.2  Equations with Quadratic Nonlinearity That Contain
     Arbitrary Functions ...................................... 437
     7.2-1  Equations of the Form ∫αb K(t)y(t)y(...)dt =
            F(x) .............................................. 437
     7.2-2  Equations of the Form ∫αbK(х,t)y(t) + 
            M(x,t)y2(t)]dt = F(x) ............................. 443
7.3  Equations with Power-Law Nonlinearity That Contain
     Arbitrary Functions ...................................... 444
     7.3-1  Equations of the Form ∫αbK(t)yμ(x)yγ(t) dt =
            F(x) .............................................. 444
     7.3-2  Equations of the Form ∫αbK(t)yγ(t)y(xt)dt =
            F(x) .............................................. 444
     7.3-3  Equations of the Form ∫αbK(t)yγ(t)y(x+βt)dt =
            F(x) .............................................. 445
     7.3-4  Equations of the Form ∫αb[K(x,t)y(t) +
            M(x,t)yγ(t)]dt = ƒ(x) ............................ 446
     7.3-5  Other Equations ................................... 446
7.4  Equations with Nonlinearity of General Form .............. 447
     7.4-1  Equations of the Form ∫αbφ(y(x))K(t,y(t))dt =
            F(x) .............................................. 447
     7.4-2  Equations of the Form ∫αb y(xt)K (t,y(t))dt =
            F(x) .............................................. 447
     7.4-3  Equations of the Form ∫αby(x + βt)K(t,y(t))dt =
            F(x) .............................................. 449
     7.4-4  EquationsofmeForm ∫αbK(x,t)y(t) +
            φ(x)ψ(t,y(t))]dt = F(x) .......................... 450
     7.4-5  Other Equations ................................... 451

8    Nonlinear Equations of the Second Kind with Constant
     Limits of Integration .................................... 453
8.1  Equations with Quadratic Nonlinearity That Contain
     Arbitrary Parameters ..................................... 453
     8.1-1  Equations of the Form y(x) + ∫αbK(x,t)y2(t)dt =
            F(x) .............................................. 453
     8.1-2  Equations of the Form y(x) + ∫αbK(x,t)y(x)y(t)
            dt = F(x) ......................................... 454
     8.1-3  Equations of the Form y(x) + ∫αbK(t)y(t)y(...)
            dt = F(x) ......................................... 455
8.2  Equations with Quadratic Nonlinearity That Contain
     Arbitrary Functions ...................................... 456
     8.2-1  Equations of the Form y(x) +∫αbK(x,t)y2(t)dt =
            F(x) .............................................. 456
     8.2-2  Equations of the Form y(x) +
            ∫αb∑Knm(x,t)yn(x)ym(t)dt = F(x), n+m≤2 ............ 457
     8.2-3  Equations of the Form y(x) + ∫αbK(t)y(t)y(...)
            dt = F(x) ......................................... 460
8.3  Equations with Power-Law Nonlinearity .................... 464
     8.3-1  Equations of the Form y(x) + ∫αbK(x,t)yβ(t)
            dt = F(x) ......................................... 464
     8.3-2  Other Equations ................................... 465
8.4  Equations with Exponential Nonlinearity .................. 467
     8.4-1  Integrands with Nonlinearity of the Form
            exp[βy(t)] ....................................... 467
     8.4-2  Other Integrands .................................. 468
8.5  Equations with Hyperbolic Nonlinearity ................... 468
     8.5-1  Integrands with Nonlinearity of the Form
            cosh[βy(t)] ...................................... 468
     8.5-2  Integrands with Nonlinearity of the Form
            sinh[βy(t)] ....................................... 469
     8.5-3  Integrands with Nonlinearity of the Form
            tanh[βy(t)] ....................................... 469
     8.5-4  Integrands with Nonlinearity of the Form
            coth[βy(t)] ....................................... 470
     8.5-5  Other Integrands .................................. 471
8.6  Equations with Logarithmic Nonlinearity .................. 472
     8.6-1  Integrands with Nonlinearity of the Form
            In[βy(t)] ........................................ 472
     8.6-2  Other Integrands .................................. 473
8.7  Equations with Trigonometric Nonlinearity ................ 473
     8.7-1  Integrands with Nonlinearity of the Form
            cos[βy(t)] ........................................ 473
     8.7-2  Integrands with Nonlinearity of the Form
            sin[βy(t)] ........................................ 474
     8.7-3  Integrands with Nonlinearity of the Form
            tan[βy(t)] ........................................ 475
     8.7-4  Integrands with Nonlinearity of the Form
            cot[βy(t)] ........................................ 475
     8.7-5  Other Integrands .................................. 476
8.8  Equations with Nonlinearity of General Form .............. 477
     8.8-1  Equations of the Form y(x) +∫αbK(Ӏx-tӀ)G(y(t))
            dt = F(x) ......................................... 477
     8.8-2  Equations of the Form y(x) + ∫αbK(x,t)G(t,y(t))
            dt = F(x) ......................................... 479
     8.8-3  Equations of the Form y(x) + ∫αbG(x,t,y(t))dt =
            F(x) .............................................. 483
     8.8-4  Equations of the Form y(x) + ∫αby(xt)G(t,y(t))
            dt = F(x) ......................................... 485
     8.8-5  Equations of the Form y(x) + ∫αbу(х+βt)G(t,y(t))
            dt = F(x) ......................................... 487
     8.8-6  Other Equations ................................... 494

Part II  Methods for Solving Integral Equations

9    Main Definitions and Formulas  Integral Transforms ....... 501
9.1  Some Definitions, Remarks, and Formulas .................. 501
     9.1-1  Some Definitions .................................. 501
     9.1-2  Structure of Solutions to Linear Integral
            Equations ......................................... 502
     9.1-3  Integral Transforms ............................... 503
     9.1-4  Residues  Calculation Formulas  Cauchy's Residue
            Theorem ........................................... 504
     9.1-5  Jordan Lemma ...................................... 505
9.2  Laplace Transform ........................................ 505
     9.2-1  Definition  Inversion Formula ..................... 505
     9.2-2  Inverse Transforms of Rational Functions .......... 506
     9.2-3  Inversion of Functions with Finitely Many
            Singular Points ................................... 507
     9.2-4  Convolution Theorem  Main Properties of the
            Laplace Transform ................................. 507
     9.2-5  Limit Theorems .................................... 507
     9.2-6  Representation of Inverse Transforms as
            Convergent Series ................................. 509
     9.2-7  Representation of Inverse Transforms as
            Asymptotic Expansions as x → ∞ .................... 509
     9.2-8  Post-Widder Formula ............................... 510
9.3  Mellin Transform ......................................... 510
     9.3-1  Definition  Inversion Formula ..................... 510
     9.3-2  Main Properties of the Mellin Transform ........... 511
     9.3-3  Relation Among the Mellin, Laplace, and Fourier
            Transforms ........................................ 511
9.4  Fourier Transform ........................................ 512
     9.4-1  Definition  Inversion Formula ..................... 512
     9.4-2  Asymmetric Form of the Transform .................. 512
     9.4-3  Alternative Fourier Transform ..................... 512
     9.4-4  Convolution Theorem  Main Properties of the
            Fourier Transforms ................................ 513
9.5  Fourier Cosine and Sine Transforms ....................... 514
     9.5-1  Fourier Cosine Transform .......................... 514
     9.5-2  Fourier Sine Transform ............................ 514
9.6  Other Integral Transforms ................................ 515
     9.6-1  Hankel Transform .................................. 515
     9.6-2  Meijer Transform .................................. 516
     9.6-3  Kontorovich-Lebedev Transform ..................... 516
     9.6-4  y-transform ....................................... 516
     9.6-5  Summary Table of Integral Transforms .............. 517

10   Methods for Solving Linear Equations of the Form ∫αx
     K(x,t)y(t)dt = ƒ(x) ...................................... 519
10.1 Volterra Equations of the First Kind ..................... 519
     10.1-1 Equations of the First Kind Function and Kernel
            Classes ........................................... 519
     10.1-2 Existence and Uniqueness of a Solution ............ 520
     10.1-3 Some Problems Leading to Volterra Integral
            Equations of the First Kind ....................... 520
10.2 Equations with Degenerate Kernel: K(x,t) = g1(x)h1(t) +
     ... + gn(х)hn(t) ......................................... 522
     10.2-1 Equations with Kernel of the Form K(x,t) =
            g1(x)h1(t) + g2(х)h2(t) ............................ 522
     10.2-2 Equations with General Degenerate Kernel .......... 523
10.3 Reduction of Volterra Equations of the First Kind to
     Volterra Equations of the Second Kind .................... 524
     10.3-1 First Method ...................................... 524
     10.3-2 Second Method ..................................... 524
10.4 Equations with Difference Kernel: K(x,t) = K(x-t) ........ 524
     10.4-1 Solution Method Based on the Laplace Transform .... 524
     10.4-2 Case in Which the Transform of the Solution is
            a Rational Function ............................... 525
     10.4-3 Convolution Representation of a Solution .......... 526
     10.4-4 Application of an Auxiliary Equation .............. 527
     10.4-5 Reduction to Ordinary Differential Equations ...... 527
     10.4-6 Reduction of a Volterra Equation to a Wiener-Hopf
            Equation .......................................... 528
10.5 Method of Fractional Differentiation ..................... 529
     10.5-1 Definition of Fractional Integrals ................ 529
     10.5-2 Definition of Fractional Derivatives .............. 529
     10.5-3 Main Properties ................................... 530
     10.5-4 Solution of the Generalized Abel Equation ......... 531
     10.5-5 Erdelyi-Kober Operators ........................... 532
10.6 Equations with Weakly Singular Kernel .................... 532
     10.6-1 Method of Transformation of the Kernel ............ 532
     10.6-2 Kernel with Logarithmic Singularity ............... 533
     10.7 Method of Quadratures ............................... 534
     10.7-1 Quadrature Formulas ............................... 534
     10.7-2 General Scheme of the Method ...................... 535
     10.7-3 Algorithm Based on the Trapezoidal Rule ........... 536
     10.7-4 Algorithm for an Equation with Degenerate Kernel .. 536
10.8 Equations with Infinite Integration Limit ................ 537
     10.8-1 Equation of the First Kind with Variable Lower
            Limit of Integration .............................. 537
     10.8-2 Reduction to a Wiener-Hopf Equation of the First
            Kind .............................................. 538

11   Methods for Solving Linear Equations of the Form y(x) -
     ∫αbK(x,t)y(t)dt = ƒ(x) ................................... 539
     11.1 Volterra Integral Equations of the Second Kind ...... 539
     11.1-1 Preliminary Remarks Equations for the Resolvent ... 539
     11.1-2 Relationship Between Solutions of Some Integral
            Equations ......................................... 540
11.2 Equations with Degenerate Kernel: K(x,t) = g1(x)h1(t) +
     ... + gn(x)hn(t) ......................................... 540
     11.2-1 Equations with Kernel of the Form K(x,t) =
            φ(x) + ψ(х)(х-t) .................................. 540
     11.2-2 Equations with Kernel of the Form K(x,t) =
            φ(t) + ψ(t)(t-x) .................................. 541
     11.2-3 Equations with Kernel of the Form K(x,t) =
            ∑nm=1 φm(x)(x-t)m-1 ................................. 542
     11.2-4 Equations with Kernel of the Form K(x,t) =
            ∑nm=1 φm(t)(t-x)m-1 ................................. 543
     11.2-5 Equations with Degenerate Kernel of the General
            Form .............................................. 543
11.3 Equations with Difference Kernel: K(x,t) = K(x-1) ........ 544
     11.3-1 Solution Method Based on the Laplace Transform .... 544
     11.3-2 Method Based on the Solution of an Auxiliary
            Equation .......................................... 546
     11.3-3 Reduction to Ordinary Differential Equations ...... 547
     11.3-4 Reduction to a Wiener-Hopf Equation of the Second
            Kind .............................................. 547
     11.3-5 Method of Fractional Integration for the
            Generalized Abel Equation ......................... 548
     11.3-6 Systems of Volterra Integral Equations ............ 549
11.4 Operator Methods for Solving Linear Integral Equations ... 549
     11.4-1 Application of a Solution of a "Truncated"
            Equation of the First Kind ........................ 549
     11.4-2 Application of the Auxiliary Equation of the
            Second Kind ....................................... 551
     11.4-3 Method for Solving "Quadratic" Operator Equations . 552
     11.4-4 Solution of Operator Equations of Polynomial
            Form .............................................. 553
     11.4-5 Some Generalizations .............................. 554
11.5 Construction of Solutions of Integral Equations with
     Special Right-Hand Side .................................. 555
     11.5-1 General Scheme .................................... 555
     11.5-2 Generating Function of Exponential Form ........... 555
     11.5-3 Power-Law Generating Function ..................... 557
     11.5-4 Generating Function Containing Sines and Cosines .. 558
11.6 Method of Model Solutions ................................ 559
     11.6-1 Preliminary Remarks ............................... 559
     11.6-2 Description of the Method ......................... 560
     11.6-3 Model Solution in the Case of an Exponential
            Right-Hand Side ................................... 561
     11.6-4 Model Solution in the Case of a Power-Law
            Right-Hand Side ................................... 562
     11.6-5 Model Solution in the Case of a Sine-Shaped
            Right-Hand Side ................................... 562
     11.6-6 Model Solution in the Case of a Cosine-Shaped
            Right-Hand Side ................................... 563
     11.6-7 Some Generalizations .............................. 563
11.7 Method of Differentiation for Integral Equations ......... 564
     11.7-1 Equations with Kernel Containing a Sum of
            Exponential Functions ............................. 564
     11.7-2 Equations with Kernel Containing a Sum of
            Hyperbolic Functions .............................. 564
     11.7-3 Equations with Kernel Containing a Sum of
            Trigonometric Functions ........................... 564
     11.7-4 Equations Whose Kernels Contain Combinations of
            Various Functions ................................. 565
11.8 Reduction of Volterra Equations of the Second Kind to
     Volterra Equations of the First Kind ..................... 565
     11.8-1 First Method ...................................... 565
     11.8-2 Second Method ..................................... 566
11.9 Successive Approximation Method .......................... 566
     11.9-1 General Scheme .................................... 566
     11.9-2 Formula for the Resolvent ......................... 567
11.10 Method of Quadratures ................................... 568
     11.10-1 General Scheme of the Method ..................... 568
     11.10-2 Application of the Trapezoidal Rule .............. 568
     11.10-3 Case of a Degenerate Kernel ...................... 569
11.11 Equations with Infinite Integration Limit ............... 569
     11.11-1 Equation of the Second Kind with Variable Lower
             Integration Limit ................................ 570
     11.11-2 Reduction to a Wiener-Hopf Equation of the
             Second Kind ...................................... 571

12   Methods for Solving Linear Equations of the Form
     ∫αbK(x,t)y(t)dt = ƒ(x) ................................... 573
12.1 Some Definition and Remarks .............................. 573
     12.1-1 Fredholm Integral Equations of the First Kind ..... 573
     12.1-2 Integral Equations of the First Kind with Weak
            Singularity ....................................... 574
     12.1-3 Integral Equations of Convolution Type ............ 574
     12.1-4 Dual Integral Equations of the First Kind ......... 575
     12.1-5 Some Problems Leading to Integral Equations of
            the First Kind .................................... 575
12.2 Integral Equations of the First Kind with Symmetric
     Kernel ................................................... 577
     12.2-1 Solution of an Integral Equation in Terms of
            Series in Eigenfunctions of Its Kernel ............ 577
     12.2-2 Method of Successive Approximations ............... 579
12.3 Integral Equations of the First Kind with Nonsymmetric
     Kernel ................................................... 580
     12.3-1 Representation of a Solution in the Form of
            Series General Description ........................ 580
     12.3-2 Special Case of a Kernel That is a Generating
            Function .......................................... 580
     12.3-3 Special Case of the Right-Hand Side Represented
            in Terms of Orthogonal Functions .................. 582
     12.3-4 General Case Galerkin's Method .................... 582
     12.3-5 Utilization of the Schmidt Kernels for the
            Construction of Solutions of Equations ............ 582
12.4 Method of Differentiation for Integral Equations ......... 583
     12.4-1 Equations with Modulus ............................ 583
     12.4-2 Other Equations Some Generalizations .............. 585
12.5 Method of Integral Transforms ............................ 586
     12.5-1 Equation with Difference Kernel on the Entire
            Axis .............................................. 586
     12.5-2 Equations with Kernel K(x,t) = K(x/t) on the
            Semiaxis .......................................... 587
     12.5-3 Equation with Kernel K(x,t) = K(xt) and Some
            Generalizations ................................... 587
12.6 Krein's Method and Some Other Exact Methods for Integral
     Equations of Special Types	............................... 588
     12.6-1 Krein's Method for an Equation with Difference
            Kernel with a Weak Singularity .................... 588
     12.6-2 Kernel is the Sum of a Nondegenerate Kernel and an
            Arbitrary Degenerate Kernel ....................... 589
     12.6-3 Reduction of Integral Equations of the First
            Kind to Equations of the Second Kind .............. 591
12.7 Riemann Problem for the Real Axis ........................ 592
     12.7-1 Relationships Between the Fourier Integral and
            the Cauchy Type Integral .......................... 592
     12.7-2 One-Sided Fourier Integrals ....................... 593
     12.7-3 Analytic Continuation Theorem and the Generalized
            Liouville Theorem ................................. 595
     12.7-4 Riemann Boundary Value Problem .................... 595
     12.7-5 Problems with Rational Coefficients ............... 601
     12.7-6 Exceptional Cases The Homogeneous Problem ......... 602
     12.7-7 Exceptional Cases The Nonhomogeneous Problem ...... 604
12.8 Carleman Method for Equations of the Convolution Type of
     the First Kind ........................................... 606
     12.8-1 Wiener-HopfEquationof the First Kind .............. 606
     12.8-2 Integral Equations of the First Kind with Two
            Kernels ........................................... 607
12.9 Dual Integral Equations of the First Kind ................ 610
     12.9-1 Carleman Method for Equations with Difference
            Kernels ........................................... 610
     12.9-2 General Scheme of Finding Solutions of Dual
            Integral Equations ................................ 611
     12.9-3 Exact Solutions of Some Dual Equations of the
            First Kind ........................................ 613
     12.9-4 Reduction of Dual Equations to a Fredholm
            Equation .......................................... 615
12.10 Asymptotic Methods for Solving Equations with
     Logarithmic Singularity .................................. 618
     12.10-1 Preliminary Remarks .............................. 618
     12.10-2 Solution for Large λ ............................. 619
     12.10-3 Solution for Small λ ............................. 620
     12.10-4 Integral Equation of Elasticity .................. 621
12.11 Regularization Methods .................................. 621
     12.11-1 Lavrentiev Regularization Method ................. 621
     12.11-2 Tikhonov Regularization Method ................... 622
12.12 Fredholm Integral Equation of the First Kind as an
     Ill-Posed Problem ........................................ 623
     12.12-1 General Notions of Well-Posed and Ill-Posed
             Problems ......................................... 623
     12.12-2 Integral Equation of the First Kind is an
             Ill-Posed Problem ................................ 624

13   Methods for Solving Linear Equations of the Form y(x) -
     ∫αbK(x,t)y(t)dt = ƒ(x) ................................... 625
13.1 Some Definition and Remarks .............................. 625
     13.1-1 Fredholm Equations and Equations with Weak
            Singularity of the Second Kind .................... 625
     13.1-2 Structure of the Solution ......................... 626
     13.1-3 Integral Equations of Convolution Type of the
            Second Kind ....................................... 626
     13.1-4 Dual Integral Equations of the Second Kind ........ 627
13.2 Fredholm Equations of the Second Kind with Degenerate
     Kernel Some Generalizations .............................. 627
     13.2-1 Simplest Degenerate Kernel ........................ 627
     13.2-2 Degenerate Kernel in the General Case ............. 628
     13.2-3 Kernel is the Sum of a Nondegenerate Kernel and
            an Arbitrary Degenerate Kernel .................... 631
13.3 Solution as a Power Series in the Parameter Method of
     Successive Approximations ................................ 632
     13.3-1 Iterated Kernels .................................. 632
     13.3-2 Method of Successive Approximations ............... 633
     13.3-3 Construction of the Resolvent ..................... 633
     13.3-4 Orthogonal Kernels ................................ 634
13.4 Method of Fredholm Determinants .......................... 635
     13.4-1 Formula for the Resolvent ......................... 635
     13.4-2 Recurrent Relations ............................... 636
13.5 Fredholm Theorems and the Fredholm Alternative ........... 637
     13.5-1 Fredholm Theorems ................................. 637
     13.5-2 Fredholm Alternative .............................. 638
13.6 Fredholm Integral Equations of the Second Kind with
     Symmetric Kernel ......................................... 639
     13.6-1 Characteristic Values and Eigenfunctions .......... 639
     13.6-2 Bilinear Series ................................... 640
     13.6-3 Hilbert-Schmidt Theorem ........................... 641
     13.6-4 Bilinear Series of Iterated Kernels ............... 642
     13.6-5 Solution of the Nonhomogeneous Equation ........... 642
     13.6-6 Fredholm Alternative for Symmetric Equations ...... 643
     13.6-7 Resolvent of a Symmetric Kernel ................... 644
     13.6-8 Extremal Properties of Characteristic Values and
            Eigenfunctions .................................... 644
     13.6-9 Kellog's Method for Finding Characteristic Values
            in the Case of Symmetric Kernel ................... 645
     13.6-10 Trace Method for the Approximation of
             Characteristic Values ............................ 646
     13.6-11 Integral Equations Reducible to Symmetric
             Equations ........................................ 647
     13.6-12 Skew-Symmetric Integral Equations ................ 647
     13.6-13 Remark on Nonsymmetric Kernels ................... 647
13.7 Integral Equations with Nonnegative Kernels .............. 648
     13.7-1 Positive Principal Eigenvalues Generalized
            Jentzch Theorem ................................... 648
     13.7-2 Positive Solutions of a Nonhomogeneous Integral
            Equation .......................................... 649
     13.7-3 Estimates for the Spectral Radius ................. 649
     13.7-4 Basic Definition and Theorems for Oscillating
            Kernels ........................................... 651
     13.7-5 Stochastic Kernels ................................ 654
13.8 Operator Method for Solving Integral Equations of the
     Second Kind .............................................. 655
     13.8-1 Simplest Scheme ................................... 655
     13.8-2 Solution of Equations of the Second Kind on the
            Semiaxis .......................................... 655
13.9 Methods of Integral Transforms and Model Solutions ....... 656
     13.9-1 Equation with Difference Kernel on the Entire
            Axis .............................................. 656
     13.9-2 Equation with the Kernel K(x,t) = t-1Q(x/t) on
            the Semiaxis ...................................... 657
     13.9-3 Equation with the Kernel K(x,t) = tβQ(xt) on the
            Semiaxis .......................................... 658
     13.9-4 Method of Model Solutions for Equations on the
            Entire Axis ....................................... 659
13.10 Carleman Method for Integral Equations of Convolution
     Type of the Second Kind .................................. 660
     13.10-1 Wiener-Hopf Equation of the Second Kind .......... 660
     13.10-2 Integral Equation of the Second Kind with Two
             Kernels .......................................... 664
     13.10-3 Equations of Convolution Type with Variable
             Integration Limit ................................ 668
     13.10-4 Dual Equation of Convolution Type of the Second
             Kind ............................................. 670
13.11 Wiener-Hopf Method ...................................... 671
     13.11-1 Some Remarks ..................................... 671
     13.11-2 Homogeneous Wiener-Hopf Equation of the Second
             Kind ............................................. 673
     13.11-3 General Scheme of the Method The Factorization
             Problem .......................................... 676
     13.11-4 Nonhomogeneous Wiener-Hopf Equation of the
             Second Kind ...................................... 677
     13.11-5 Exceptional Case of a Wiener-Hopf Equation of
             the Second Kind .................................. 678
13.12 Krein's Method for Wiener-Hopf Equations ................ 679
     13.12-1 Some Remarks The Factorization Problem ........... 679
     13.12-2 Solution of the Wiener-Hopf Equations of the
             Second Kind ...................................... 681
     13.12-3 Hopf-Fock Formula ................................ 683
13.13 Methods for Solving Equations with Difference Kernels
      on a Finite Interval .................................... 683
     13.13-1 Krein's Method ................................... 683
     13.13-2 Kernels with Rational Fourier Transforms ......... 685
     13.13-3 Reduction to Ordinary Differential Equations ..... 686
13.14 Method of Approximating a Kernel by a Degenerate One .... 687
     13.14-1 Approximation of the Kernel ...................... 687
     13.14-2 Approximate Solution ............................. 688
13.15 Bateman Method .......................................... 689
     13.15-1 General Scheme of the Method ..................... 689
     13.15-2 Some Special Cases ............................... 690
13.16 Collocation Method ...................................... 692
     13.16-1 General Remarks .................................. 692
     13.16-2 Approximate Solution ............................. 693
     13.16-3 Eigenfunctions of the Equation ................... 694
13.17 Method of Least Squares ................................. 695
     13.17-1 Description of the Method ........................ 695
     13.17-2 Construction of Eigenfunctions ................... 696
13.18 Bubnov-Galerkin Method .................................. 697
     13.18-1 Description of the Method ........................ 697
     13.18-2 Characteristic Values ............................ 697
13.19 Quadrature Method ....................................... 698
     13.19-1 General Scheme for Fredholm Equations of the
             Second Kind ...................................... 698
     13.19-2 Construction of the Eigenfunctions ............... 699
     13.19-3 Specific Features of the Application of
             Quadrature Formulas .............................. 700
13.20 Systems of Fredholm Integral Equations of the Second
      Kind .................................................... 701
     13.20-1 Some Remarks ..................................... 701
     13.20-2 Method of Reducing a System of Equations to
             a Single Equation ................................ 701
13.21 Regularization Method for Equations with Infinite
      Limits of Integration ................................... 702
     13.21-1 Basic Equation and Fredholm Theorems ............. 702
     13.21-2 Regularizing Operators ........................... 703
     13.21-3 Regularization Method ............................ 704

14   Methods for Solving Singular Integral Equations of the
     First Kind ............................................... 707
14.1 Some Definitions and Remarks ............................. 707
     14.1-1 Integral Equations of the First Kind with Cauchy
            Kernel ............................................ 707
     14.1-2 Integral Equations of the First Kind with Hilbert
            Kernel ............................................ 707
14.2 Cauchy Type Integral ..................................... 708
     14.2-1 Definition of the Cauchy Type Integral ............ 708
     14.2-2 Holder Condition .................................. 709
     14.2-3 Principal Value of a Singular Integral ............ 709
     14.2-4 Multivalued Functions ............................. 711
     14.2-5 Principal Value of a Singular Curvilinear
            Integral .......................................... 712
     14.2-6 Poincare-Bertrand Formula ......................... 714
14.3 Riemann Boundary Value Problem ........................... 714
     14.3-1 Principle of Argument The Generalized Liouville
            Theorem ........................................... 714
     14.3-2 Hermite Interpolation Polynomial .................. 716
     14.3-3 Notion of the Index ............................... 716
     14.3-4 Statement of the Riemann Problem .................. 718
     14.3-5 Solution of the Homogeneous Problem ............... 720
     14.3-6 Solution of the Nonhomogeneous Problem ............ 721
     14.3-7 Riemann Problem with Rational Coefficients ........ 723
     14.3-8 Riemann Problem for a Half-Plane .................. 725
     14.3-9 Exceptional Cases of the Riemann Problem .......... 727
     14.3-10 Riemann Problem for a Multiply Connected Domain .. 731
     14.3-11 Riemann Problem for Open Curves .................. 734
     14.3-12 Riemann Problem with a Discontinuous Coefficient . 739
     14.3-13 Riemann Problem in the General Case .............. 741
     14.3-14 Hilbert Boundary Value Problem ................... 742
14.4 Singular Integral Equations of the First Kind ............ 743
     14.4-1 Simplest Equation with Cauchy Kernel .............. 743
     14.4-2 Equation with Cauchy Kernel on the Real Axis ...... 743
     14.4-3 Equation of the First Kind on a Finite Interval ... 744
     14.4-4 General Equation of the First Kind with Cauchy
            Kernel ............................................ 745
     14.4-5 Equations of the First Kind with Hilbert Kernel ... 746
14.5 Multhopp-Kalandiya Method ................................ 747
     14.5-1 Solution That is Unbounded at the Endpoints of
            the Interval ...................................... 747
     14.5-2 Solution Bounded at One Endpoint of the Interval .. 749
     14.5-3 Solution Bounded at Both Endpoints of the
            Interval .......................................... 750
14.6 Hypersingular Integral Equations ......................... 751
     14.6-1 Hypersingular Integral Equations with Cauchy- and
            Hilbert-Type Kernels .............................. 751
     14.6-2 Definition of Hypersingular Integrals ............. 751
     14.6-3 Exact Solution of the Simplest Hypersingular
            Equation with Cauchy-Type Kernel .................. 753
     14.6-4 Exact Solution of the Simplest Hypersingular
            Equation with Hilbert-Type Kernel ................. 754
     14.6-5 Numerical Methods for Hypersingular Equations ..... 754

15   Methods for Solving Complete Singular Integral
     Equations ................................................ 757
15.1 Some Definitions and Remarks ............................. 757
     15.1-1 Integral Equations with Cauchy Kernel ............. 757
     15.1-2 Integral Equations with Hilbert Kernel ............ 759
     15.1-3 Fredholm Equations of the Second Kind on
            a Contour ......................................... 759
15.2 Carleman Method for Characteristic Equations ............. 761
     15.2-1 Characteristic Equation with Cauchy Kernel ........ 761
     15.2-2 Transposed Equation of a Characteristic Equation .. 764
     15.2-3 Characteristic Equation on the Real Axis .......... 765
     15.2-4 Exceptional Case of a Characteristic Equation ..... 767
     15.2-5 Characteristic Equation with Hilbert Kernel ....... 769
     15.2-6 Tricomi Equation .................................. 769
15.3 Complete Singular Integral Equations Solvable in
     a Closed Form ............................................ 770
     15.3-1 Closed-Form Solutions in the Case of Constant
            Coefficients ...................................... 770
     15.3-2 Closed-Form Solutions in the General Case ......... 771
15.4 Regularization Method for Complete Singular Integral
     Equations ................................................ 772
     15.4-1 Certain Properties of Singular Operators .......... 772
     15.4-2 Regularizer ....................................... 774
     15.4-3 Methods of Left and Right Regularization .......... 775
     15.4-4 Problem of Equivalent Regularization .............. 776
     15.4-5 Fredholm Theorems ................................. 777
     15.4-6 Carleman-Vekua Approach to the Regularization ..... 778
     15.4-7 Regularization in Exceptional Cases ............... 779
     15.4-8 Complete Equation with Hilbert Kernel ............. 780
15.5 Analysis of Solutions Singularities for Complete
     Integral Equations with Generalized Cauchy Kernels ....... 783
     15.5-1 Statement of the Problem and Preliminary Remarks .. 783
     15.5-2 Auxiliary Results ................................. 784
     15.5-3 Equations for the Exponents of Singularity of
            a Solution ........................................ 787
     15.5-4 Analysis of Equations for Singularity Exponents ... 789
     15.5-5 Application to an Equation Arising in Fracture
            Mechanics ......................................... 791
15.6 Direct Numerical Solution of Singular Integral Equations
     with Generalized Kernels ................................. 792
     15.6-1 Preliminary Remarks ............................... 792
     15.6-2 Quadrature Formulas for Integrals with the Jacobi
            Weight Function ................................... 793
     15.6-3 Approximation of Solutions in Terms of a System
            of Orthogonal Polynomials ......................... 795
     15.6-4 Some Special Functions and Their Calculations ..... 797
     15.6-5 Numerical Solution of Singular Integral Equations . 799
     15.6-6 Numerical Solutions of Singular Integral
            Equations of Bueckner Type ........................ 801

16   Methods for Solving Nonlinear Integral Equations ......... 805
16.1 Some Definitions and Remarks ............................. 805
     16.1-1 Nonlinear Equations with Variable Limit of
            Integration (Volterra Equations) .................. 805
     16.1-2 Nonlinear Equations with Constant Integration
            Limits (Urysohn Equations) ........................ 806
     16.1-3 Some Special Features of Nonlinear Integral
            Equations ......................................... 807
16.2 Exact Methods for Nonlinear Equations with Variable
     Limit of Integration ..................................... 809
     16.2-1 Method of Integral Transforms ..................... 809
     16.2-2 Method of Differentiation for Nonlinear Equations
            with Degenerate Kernel ............................ 810
16.3 Approximate and Numerical Methods for Nonlinear
     Equations with Variable Limit of Integration ............. 811
     16.3-1 Successive Approximation Method ................... 811
     16.3-2 Newton-Kantorovich Method ......................... 813
     16.3-3 Collocation Method ................................ 815
     16.3-4 Quadrature Method ................................. 816
16.4 Exact Methods for Nonlinear Equations with Constant
     Integration Limits ....................................... 817
     16.4-1 Nonlinear Equations with Degenerate Kernels ....... 817
     16.4-2 Method of Integral Transforms ..................... 819
     16.4-3 Method of Differentiating for Integral Equations .. 820
     16.4-4 Method for Special Urysohn Equations of the First
            Kind .............................................. 821
     16.4-5 Method for Special Urysohn Equations of the
            Second Kind ....................................... 822
     16.4-6 Some Generalizations .............................. 824
16.5 Approximate and Numerical Methods for Nonlinear
     Equations with Constant Integration Limits ............... 826
     16.5-1 Successive Approximation Method ................... 826
     16.5-2 Newton-Kantorovich Method ......................... 827
     16.5-3 Quadrature Method ................................. 829
     16.5-4 Tikhonov Regularization Method .................... 829
16.6 Existence and Uniqueness Theorems for Nonlinear
     Equations ................................................ 830
     16.6-1 Hammerstein Equations ............................. 830
     16.6-2 Urysohn Equations ................................. 832
16.7 Nonlinear Equations with a Parameter: Eigenfunctions,
     Eigenvalues, Bifurcation Points .......................... 834
     16.7-1 Eigenfunctions and Eigenvalues of Nonlinear
            Integral Equations ................................ 834
     16.7-2 Local Solutions of a Nonlinear Integral Equation
            with a Parameter .................................. 835
     16.7-3 Bifurcation Points of Nonlinear Integral
            Equations ......................................... 835

17   Methods for Solving Multidimensional Mixed Integral
     Equations ................................................ 839
17.1 Some Definition and Remarks .............................. 839
     17.1-1 Basic Classes of Functions ........................ 839
     17.1-2 Mixed Equations on a Finite Interval .............. 840
     17.1-3 Mixed Equation on a Ring-Shaped (Circular) Domain . 841
     17.1-4 Mixed Equations on a Closed Bounded Set ........... 842
17.2 Methods of Solution of Mixed Integral Equations on
     a Finite Interval ........................................ 843
     17.2-1 Equation with a Hilbert-Schmidt Kernel and
            a Given Right-Hand Side ........................... 843
     17.2-2 Equation with Hilbert-Schmidt Kernel and
            Auxiliary Conditions .............................. 845
     17.2-3 Equation with a Schmidt Kernel and a Given
            Right-Hand Side on an Interval .................... 848
     17.2-4 Equation with a Schmidt Kernel and Auxiliary
            Conditions ........................................ 851
17.3 Methods of Solving Mixed Integral Equations on
     a Ring-Shaped Domain ..................................... 855
     17.3-1 Equation with a Hilbert-Schmidt Kernel and
            a Given Right-Hand Side ........................... 855
     17.3-2 Equation with a Hilbert-Schmidt Kernel and
            Auxiliary Conditions .............................. 856
     17.3-3 Equation with a Schmidt Kernel and a Given
            Right-Hand Side ................................... 859
     17.3-4 Equation with a Schmidt Kernel and Auxiliary
            Conditions on Ring-Shaped Domain .................. 862
17.4 Projection Method for Solving Mixed Equations on
     a Bounded Set ............................................ 866
     17.4-1 Mixed Operator Equation with a Given Right-Hand
            Side .............................................. 866
     17.4-2 Mixed Operator Equations with Auxiliary
            Conditions ........................................ 869
     17.4-3 General Projection Problem for Operator Equation .. 873

18   Application of Integral Equations for the Investigation
     of Differential Equations ................................ 875
18.1 Reduction of the Cauchy Problem for ODEs to Integral
     Equations ................................................ 875
     18.1-1 Cauchy Problem for First-Order ODEs Uniqueness
            and Existence Theorems ............................ 875
     18.1-2 Cauchy Problem for First-Order ODEs Method of
            Successive Approximations ......................... 876
     18.1-3 Cauchy Problem for Second-Order ODEs  Method of
            Successive Approximations ......................... 876
     18.1-4 Cauchy Problem for a Special n-Order Linear ODE ... 876
18.2 Reduction of Boundary Value Problems for ODEs to
     Volterra Integral Equations. Calculation of Eigenvalues .. 877
     18.2-1 Reduction of Differential Equations to Volterra
            Integral Equations ................................ 877
     18.2-2 Application of Volterra Equations to the
            Calculation of Eigenvalues ........................ 879
18.3 Reduction of Boundary Value Problems for ODEs to
     Fredholm Integral Equations with the Help of the Green's
     Function ................................................. 881
     18.3-1 Linear Ordinary Differential Equations
            Fundamental Solutions ............................. 881
     18.3-2 Boundary Value Problems for nth Order
            Differential Equations Green's Function ........... 882
     18.3-3 Boundary Value Problems for Second-Order
            Differential Equations Green's Function ........... 883
     18.3-4 Nonlinear Problem of Nonisothermal Flow in Plane
            Channel ........................................... 884
18.4 Reduction of PDEs with Boundary Conditions of the Third
     Kind to Integral Equations ............................... 887
     18.4-1 Usage of Particular Solutions of PDEs for the
            Construction of Other Solutions ................... 887
     18.4-2 Mass Transfer to a Particle in Fluid Flow
            Complicated by a Surface Reaction ................. 888
     18.4-3 Integral Equations for Surface Concentration and
            Diffusion Flux .................................... 890
     18.4-4 Method of Numerical Integration of the Equation
            for Surface Concentration ......................... 891
18.5 Representation of Linear Boundary Value Problems in
     Terms of Potentials ...................................... 892
     18.5-1 Basic Types of Potentials for the Laplace
            Equation and Their Properties ..................... 892
     18.5-2 Integral Identities Green's Formula ............... 895
     18.5-3 Reduction of Interior Dirichlet and Neumann
            Problems to Integral Equations .................... 895
     18.5-4 Reduction of Exterior Dirichlet and Neumann
            Problems to Integral Equations .................... 896
18.6 Representation of Solutions of Nonlinear PDEs in Terms
     of Solutions of Linear Integral Equations (Inverse
     Scattering) .............................................. 898
     18.6-1 Description of the Zakharov-Shabat Method ......... 898
     18.6-2 Korteweg-de Vries Equation and Other Nonlinear
            Equations ......................................... 899
     Supplements

Supplement 1 Elementary Functions and Their Properties ........ 905
1.1  Power, Exponential, and Logarithmic Functions ............ 905
     1.1-1  Properties of the Power Function .................. 905
     1.1-2  Properties of the Exponential Function ............ 905
     1.1-3  Properties of the Logarithmic Function ............ 906
1.2  Trigonometric Functions .................................. 907
     1.2-1  Simplest Relations ................................ 907
     1.2-2  Reduction Formulas ................................ 907
     1.2-3  Relations Between Trigonometric Functions of
            Single Argument ................................... 908
     1.2-4  Addition and Subtraction of Trigonometric
            Functions ......................................... 908
     1.2-5  Products of Trigonometric Functions ............... 908
     1.2-6  Powers of Trigonometric Functions ................. 908
     1.2-7  Addition Formulas ................................. 909
     1.2-8  Trigonometric Functions of Multiple Arguments ..... 909
     1.2-9  Trigonometric Functions of Half Argument .......... 909
     1.2-10 Differentiation Formulas .......................... 910
     1.2-11 Integration Formulas .............................. 910
     1.2-12 Expansion in Power Series ......................... 910
     1.2-13 Representation in the Form of Infinite Products ... 910
     1.2-14 Euler and de Moivre Formulas Relationship with
            Hyperbolic Functions .............................. 911
1.3  Inverse Trigonometric Functions .......................... 911
     1.3-1  Definitions of Inverse Trigonometric Functions .... 911
     1.3-2  Simplest Formulas ................................. 912
     1.3-3  Some Properties ................................... 912
     1.3-4  Relations Between Inverse Trigonometric Functions . 912
     1.3-5  Addition and Subtraction of Inverse Trigonometric
            Functions ......................................... 912
     1.3-6  Differentiation Formulas .......................... 913
     1.3-7  Integration Formulas .............................. 913
     1.3-8  Expansion in Power Series ......................... 913
1.4  Hyperbolic Functions ..................................... 913
     1.4-1  Definitions of Hyperbolic Functions ............... 913
     1.4-2  Simplest Relations ................................ 913
     1.4-3  Relations Between Hyperbolic Functions of Single
            Argument (x≥0) .................................... 914
     1.4-4  Addition and Subtraction of Hyperbolic Functions .. 914
     1.4-5  Products of Hyperbolic Functions .................. 914
     1.4-6  Powers of Hyperbolic Functions .................... 914
     1.4-7  Addition Formulas ................................. 915
     1.4-8  Hyperbolic Functions of Multiple Argument ......... 915
     1.4-9  Hyperbolic Functions of Half Argument ............. 915
     1.4-10 Differentiation Formulas .......................... 916
     1.4-11 Integration Formulas .............................. 916
     1.4-12 Expansion in Power Series ......................... 916
     1.4-13 Representation in the Form of Infinite Products ... 916
     1.4-14 Relationship with Trigonometric Functions ......... 916
1.5  Inverse Hyperbolic Functions ............................. 917
     1.5-1  Definitions of Inverse Hyperbolic Functions ....... 917
     1.5-2  Simplest Relations ................................ 917
     1.5-3  Relations Between Inverse Hyperbolic Functions .... 917
     1.5-4  Addition and Subtraction of Inverse Hyperbolic
            Functions ......................................... 917
     1.5-5  Differentiation Formulas .......................... 917
     1.5-6  Integration Formulas .............................. 918
     1.5-7  Expansion in Power Series ......................... 918

Supplement 2 Finite Sums and Infinite Series .................. 919
2.1  Finite Numerical Sums .................................... 919
     2.1-1  Progressions ...................................... 919
     2.1-2  Sums of Powers of Natural Numbers Having the Form
            ∑km ............................................... 919
     2.1-3  Alternating Sums of Powers of Natural Numbers,
            ∑(-l)kkm .......................................... 920
     2.1-4  Other Sums Containing Integers .................... 920
     2.1-5  Sums Containing Binomial Coefficients ............. 920
     2.1-6  Other Numerical Sums .............................. 921
2.2  Finite Functional Sums ................................... 922
     2.2-1  Sums Involving Hyperbolic Functions ............... 922
     2.2-2  Sums Involving Trigonometric Functions ............ 922
2.3  Infinite Numerical Series ................................ 924
     2.3-1  Progressions ...................................... 924
     2.3-2  Other Numerical Series ............................ 924
2.4  Infinite Functional Series ............................... 925
     2.4-1  Power Series ...................................... 925
     2.4-2  Trigonometric Series in One Variable Involving
            Sine .............................................. 927
     2.4-3  Trigonometric Series in One Variable Involving
            Cosine ............................................ 928
     2.4-4  Trigonometric Series in Two Variables ............. 930

Supplement 3 Tables of Indefinite Integrals ................... 933
3.1  Integrals Involving Rational Functions ................... 933
     3.1-1  Integrals Involving a + bx ........................ 933
     3.1-2  Integrals Involving α+x and b+x ................... 933
     3.1-3  Integrals Involving α2+x2 ......................... 934
     3.1-4  Integrals Involving α2-x2 ......................... 935
     3.1-5  Integrals Involving α3+X3 ......................... 936
     3.1-6  Integrals Involving α3-x3 ......................... 936
     3.1-7  Integrals Involving α4±x4 ......................... 937
3.2 Integrals Involving Irrational Functions ................. 937
     3.2-1  Integrals Involving x1/2 .......................... 937
     3.2-2  Integrals Involving (α+bx)p/2 ..................... 938
     3.2-3  Integrals Involving (x22)1/2 ..................... 938
     3.2-4  Integrals Involving (x22)1/2 ..................... 938
     3.2-5  Integrals Involving (α2-x2)1/2 ..................... 939
     3.2-6  Integrals Involving Arbitrary Powers Reduction
            Formulas .......................................... 939
3.3  Integrals Involving Exponential Functions ................ 940
3.4  Integrals Involving Hyperbolic Functions ................. 940
     3.4-1  Integrals Involving cosh x ........................ 940
     3.4-2  Integrals Involving sinh x ........................ 941
     3.4-3  Integrals Involving tanh x or coth x .............. 942
3.5  Integrals Involving Logarithmic Functions ................ 943
3.6  Integrals Involving Trigonometric Functions .............. 944
     3.6-1  Integrals Involving cos x (n = 1,2,...) ........... 944
     3.6-2  Integrals Involving sin x (n = 1,2,...) ........... 945
     3.6-3  Integrals Involving sin x and cos x ............... 947
     3.6-4  Reduction Formulas ................................ 947
     3.6-5  Integrals Involving tan x and cos x ............... 947
3.7  Integrals Involving Inverse Trigonometric Functions ...... 948

Supplement 4 Tables of Definite Integrals ..................... 951
4.1  Integrals Involving Power-Law Functions .................. 951
     4.1-1  Integrals Over a Finite Interval .................. 951
     4.1-2  Integrals Over an Infinite Interval ............... 952
4.2  Integrals Involving Exponential Functions ................ 954
4.3  Integrals Involving Hyperbolic Functions ................. 955
4.4  Integrals Involving Logarithmic Functions ................ 955
4.5  Integrals Involving Trigonometric Functions .............. 956
     4.5-1  Integrals Over a Finite Interval .................. 956
     4.5-2  Integrals Over an Infinite Interval ............... 957
4.6  Integrals Involving Bessel Functions ..................... 958
     4.6-1  Integrals Over an Infinite Interval ............... 958
     4.6-2  Other Integrals ................................... 959

Supplement 5  Tables of Laplace Transforms .................... 961
5.1  General Formulas ......................................... 961
5.2  Expressions with Power-Law Functions ..................... 963
5.3  Expressions with Exponential Functions ................... 963
5.4  Expressions with Hyperbolic Functions .................... 964
5.5  Expressions with Logarithmic Functions ................... 965
5.6  Expressions with Trigonometric Functions ................. 966
5.7  Expressions with Special Functions ....................... 967

Supplement 6 Tables of Inverse Laplace Transforms ............. 969
6.1  General Formulas ......................................... 969
6.2  Expressions with Rational Functions ...................... 971
6.3  Expressions with Square Roots ............................ 975
6.4  Expressions with Arbitrary Powers ........................ 977
6.5  Expressions with Exponential Functions ................... 978
6.6  Expressions with Hyperbolic Functions .................... 979
6.7  Expressions with Logarithmic Functions ................... 980
6.8  Expressions with Trigonometric Functions ................. 981
6.9  Expressions with Special Functions ....................... 981

Supplement 7 Tables of Fourier Cosine Transforms .............. 983
7.1  General Formulas ......................................... 983
7.2  Expressions with Power-Law Functions ..................... 983
7.3  Expressions with Exponential Functions ................... 984
7.4  Expressions with Hyperbolic Functions .................... 985
7.5  Expressions with Logarithmic Functions ................... 985
7.6  Expressions with Trigonometric Functions ................. 986
7.7  Expressions with Special Functions ....................... 987

Supplement 8 Tables of Fourier Sine Transforms ................ 989
8.1  General Formulas ......................................... 989
8.2  Expressions with Power-Law Functions ..................... 989
8.3  Expressions with Exponential Functions ................... 990
8.4  Expressions with Hyperbolic Functions .................... 991
8.5  Expressions with Logarithmic Functions ................... 992
8.6  Expressions with Trigonometric Functions ................. 992
8.7  Expressions with Special Functions ....................... 993

Supplement 9 Tables of Mellin Transforms ...................... 997
9.1  General Formulas ......................................... 997
9.2  Expressions with Power-Law Functions ..................... 998
9.3  Expressions with Exponential Functions ................... 998
9.4  Expressions with Logarithmic Functions ................... 999
9.5  Expressions with Trigonometric Functions ................. 999
9.6  Expressions with Special Functions ...................... 1000

Supplement 10 Tables of Inverse Mellin Transforms ............ 1001
10.1 Expressions with Power-Law Functions .................... 1001
10.2 Expressions with Exponential and Logarithmic Functions .. 1002
10.3 Expressions with Trigonometric Functions ................ 1003
10.4 Expressions with Special Functions ...................... 1004

Supplement 11 Special Functions and Their Properties ......... 1007
11.1 Some Coefficients, Symbols, and Numbers ................. 1007
     11.1-1 Binomial Coefficients ............................ 1007
     11.1-2 Pochhammer Symbol ................................ 1007
     11.1-3 Bernoulli Numbers ................................ 1008
     11.1-4 Euler Numbers .................................... 1008
11.2 Error Functions Exponential and Logarithmic Integrals ... 1009
     11.2-1 Error Function and Complementary Error Function .. 1009
     11.2-2 Exponential Integral ............................. 1010
     11.2-3 Logarithmic Integral ............................. 1010
11.3 Sine Integral and Cosine Integral Fresnel Integrals ..... 1011
     11.3-1 Sine Integral .................................... 1011
     11.3-2 Cosine Integral .................................. 1011
     11.3-3 Fresnel Integrals and Generalized Fresnel
            Integrals ........................................ 1012
11.4 Gamma Function, Psi Function, and Beta Function ......... 1012
     11.4-1 Gamma Function ................................... 1012
     11.4-2 Psi Function (Digamma Function) .................. 1013
     11.4-3 Beta Function .................................... 1014
11.5 Incomplete Gamma and Beta Functions ..................... 1014
     11.5-1 Incomplete Gamma Function ........................ 1014
     11.5-2 Incomplete Beta Function ......................... 1015
11.6 Bessel Functions (Cylindrical Functions) ................ 1016
     11.6-1 Definitions and Basic Formulas ................... 1016
     11.6-2 Integral Representations and Asymptotic
            Expansions ....................................... 1017
     11.6-3 Zeros of Bessel Functions ........................ 1019
     11.6-4 Orthogonality Properties of Bessel Functions ..... 1019
     11.6-5 Hankel Functions (Bessel Functions of the Third
            Kind) ............................................ 1020
11.7 Modified Bessel Functions ............................... 1021
     11.7-1 Definitions Basic Formulas ....................... 1021
     11.7-2 Integral Representations and Asymptotic
            Expansions ....................................... 1022
11.8 Airy Functions .......................................... 1023
     11.8-1 Definition and Basic Formulas .................... 1023
     11.8-2 Power Series and Asymptotic Expansions ........... 1023
11.9 Confluent Hypergeometric Functions ...................... 1024
     11.9-1 Kummer and Tricomi Confluent Hypergeometric
            Functions ........................................ 1024
     11.9-2 Integral Representations and Asymptotic
            Expansions ....................................... 1027
     11.9-3 Whittaker Confluent Hypergeometric Functions ..... 1027
11.10 Gauss Hypergeometric Functions ......................... 1028
     11.10-1 Various Representations of the Gauss
             Hypergeometric Function ......................... 1028
     11.10-2 Basic Properties ................................ 1028
11.11 Legendre Polynomials, Legendre Functions, and
      Associated Legendre Functions .......................... 1030
     11.11-1 Legendre Polynomials and Legendre Functions ..... 1030
     11.11-2 Associated Legendre Functions with Integer
             Indices and Real Argument ....................... 1031
     11.11-3 Associated Legendre Functions General Case	...... 1032
11.12 Parabolic Cylinder Functions ........................... 1034
     11.12-1 Definitions Basic Formulas ...................... 1034
     11.12-2 Integral Representations, Asymptotic Expansions,
             and Linear Relations ............................ 1035
11.13 Elliptic Integrals ..................................... 1035
     11.13-1 Complete Elliptic Integrals ..................... 1035
     11.13-2 Incomplete Elliptic Integrals (Elliptic
             Integrals) ...................................... 1037
11.14 Elliptic Functions ..................................... 1038
     11.14-1 Jacobi Elliptic Functions ....................... 1039
     11.14-2 Weierstrass Elliptic Function ................... 1042
11.15 Jacobi Theta Functions ................................. 1043
     11.15-1 Series Representation of the Jacobi Theta
             Functions Simplest Properties ................... 1043
     11.15-2 Various Relations and Formulas Connection with
             Jacobi Elliptic Functions ....................... 1044
11.16 Mathieu Functions and Modified Mathieu Functions ....... 1045
     11.16-1 Mathieu Functions ............................... 1045
     11.16-2 Modified Mathieu Functions ...................... 1046
11.17 Orthogonal Polynomials ................................. 1047
     11.17-1 Laguerre Polynomials and Generalized Laguerre
             Polynomials ..................................... 1047
     11.17-2 Chebyshev Polynomials and Functions ............. 1048
     11.17-3 Hermite Polynomials and Functions ............... 1050
     11.17-4 Jacobi Polynomials .............................. 1051
     11.17-5 Gegenbauer Polynomials .......................... 1051
11.18 Nonorthogonal Polynomials .............................. 1052
     11.18-1 Bernoulli Polynomials ........................... 1052
     11.18-2 Euler Polynomials ............................... 1053

Supplement 12 Some Notions of Functional Analysis ............ 1055
12.1 Functions of Bounded Variation .......................... 1055
     12.1-1 Definition of a Function of Bounded Variation .... 1055
     12.1-2 Classes of Functions of Bounded Variation ........ 1056
     12.1-3 Properties of Functions of Bounded Variation ..... 1056
     12.1-4 Criteria for Functions to Have Bounded Variation . 1057
     12.1-5 Properties of Continuous Functions of Bounded
            Variation ........................................ 1057
12.2 Stieltjes Integral ...................................... 1057
     12.2-1 Basic Definitions ................................ 1057
     12.2-2 Properties of the Stieltjes Integral ............. 1058
     12.2-3 Existence Theorems for the Stieltjes Integral .... 1058
12.3 Lebesgue Integral ....................................... 1059
     12.3-1 Riemann Integral and the Lebesgue Integral ....... 1059
     12.3-2 Sets of Zero Measure Notion of "Almost Every
            where" ........................................... 1060
     12.3-3 Step Functions and Measurable Functions .......... 1060
     12.3-4 Definition and Properties of the Lebesgue
            Integral ......................................... 1061
     12.3-5 Measurable Sets .................................. 1062
     12.3-6 Integration Over Measurable Sets ................. 1063
     12.3-7 Case of an Infinite Interval ..................... 1063
     12.3-8 Case of Several Variables ........................ 1064
     12.3-9 Spaces Lp ........................................ 1064
12.4 Linear Normed Spaces .................................... 1065
     12.4-1 Linear Spaces .................................... 1065
     12.4-2 Linear Normed Spaces ............................. 1065
     12.4-3 Space of Continuous Functions C(α,b) ............. 1066
     12.4-4 Lebesgue Space Lp(α,b) ........................... 1066
     12.4-5 Holder Space Cα(0,l) ............................. 1066
     12.4-6 Space of Functions of Bounded Variation V(0,1) ... 1066
12.5 Euclidean and Hilbert Spaces Linear Operators in Hilbert
     Spaces .................................................. 1067
     12.5-1 Preliminary Remarks .............................. 1067
     12.5-2 Euclidean and Hilbert Spaces ..................... 1067
     12.5-3 Linear Operators in Hilbert Spaces ............... 1068

References ................................................... 1071

Index ........................................................ 1081


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:26 2019. Размер: 98,358 bytes.
Посещение N 2059 c 27.05.2014