Martin R.M. Electronic structure: basic theory and practical methods (Cambridge; New York, 2004). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMartin R.M. Electronic structure: basic theory and practical methods. - Cambridge; New York: Cambridge univ. press, 2004. - xxiii, 624 p.: ill. - Bibliogr.: p.576-617. - Ind.: p.618-624. - ISBN 978-0-521-53440-6
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ...................................................... xvii
Acknowledgments ................................................ xx
Notation ...................................................... xxi

Part I  Overview and background topics
1  Introduction ................................................. 1
   Summary ...................................................... 1
   1.1  Quantum theory and the origins of electronic structure .. 1
   1.2  Emergence of quantitative calculations .................. 5
   1.3  The greatest challenge: electron correlation ............ 8
   1.4  Recent developments ..................................... 9
   Select further reading ...................................... 10
2  Overview .................................................... 11
   Summary ..................................................... 11
   2.1  Electronic ground state: bonding and characteristic
        structures ............................................. 12
   2.2  Volume or pressure as the most fundamental variable .... 16
   2.3  Elasticity: stress-strain relations .................... 21
   2.4  Magnetism and electron-electron interactions ........... 22
   2.5  Phonons and displacive phase transitions ............... 24
   2.6  Thermal properties: solids, liquids, and phase
        diagrams ............................................... 28
   2.7  Atomic motion: diffusion, reactions, and catalysis ..... 31
   2.8  Surfaces, interfaces, and defects ...................... 32
   2.9  Nanomaterials: between molecules and condensed matter .. 36
   2.10 Electronic excitations: bands and band gaps ............ 40
   2.11 Electronic excitations: heat capacity, conductivity,
        and optical spectra .................................... 44
   2.12 Example of MgE: bands, phonons, and
        superconductivity ...................................... 47
   2.13 The continuing challenge: electron correlation ......... 50
   Select further reading ...................................... 51
3  Theoretical background ...................................... 52
   Summary ..................................................... 52
   3.1  Basic equations for interacting electrons and nuclei ... 52
   3.2  Coulomb interaction in condensed matter ................ 56
   3.3  Force and stress theorems .............................. 56
   3.4  Statistical mechanics and the density matrix ........... 60
   3.5  Independent-electron approximations .................... 61
   3.6  Exchange and correlation ............................... 65
   3.7  Perturbation theory and the "2n + 1 theorem" ........... 68
   Select further reading ...................................... 70
   Exercises ................................................... 71
4  Periodic solids and electron bands .......................... 73
   Summary ..................................................... 73
   4.1  Structures of crystals: lattice + basis ................ 73
   4.2  The reciprocal lattice and Brillouin zone .............. 81
   4.3  Excitations and the Bloch theorem ...................... 85
   4.4  Time reversal and inversion symmetries ................. 89
   4.5  Point symmetries ....................................... 91
   4.6  Integration over the Brillouin zone and special
        points ................................................. 92
   4.7  Density of states ...................................... 96
   Select further reading ...................................... 96
   Exercises ................................................... 97
5  Uniform electron gas and simple metals ..................... 100
   Summary .................................................... 100
   5.1  Non-interacting and Hartree-Fock approximations ....... 102
   5.2  The correlation hole and energy ....................... 107
   5.3  Binding in sp-bonded metals ........................... 112
   5.4  Excitations and the Lindhard dielectric function ...... 113
   Select further reading ..................................... 116
   Exercises .................................................. 116

Part II Density functional theory
6  Density functional theory: foundations ..................... 119
   Summary .................................................... 119
   6.1  Thomas-Fermi-Dirac approximation: example of
        a functional .......................................... 120
   6.2  The Hohenberg-Kohn theorems ........................... 121
   6.3  Constrained search formulation of density functional
        theory ................................................ 125
   6.4  Extensions of Hohenberg-Kohn theorems ................. 126
   6.5  Intricacies of exact density functional theory ........ 129
   6.6  Difficulties in proceeding from the density ........... 131
   Select further reading ..................................... 132
   Exercises .................................................. 133
7  The Kohn-Sham auxiliary system ............................. 135
   Summary .................................................... 135
   7.1  Replacing one problem with another .................... 135
   7.2  The Kohn-Sham variational equations ................... 138
   7.3  Јxc, VKC, and the exchange-correlation hole ........... 139
   7.4  Meaning of the eigenvalues ............................ 144
   7.5  Intricacies of exact Kohn-Sham theory ................. 145
   7.6  Time-dependent density functional theory .............. 147
   7.7  Other generalizations of the Kohn-Sham approach ....... 148
   Select further reading ..................................... 149
   Exercises .................................................. 149
8  Functionals for exchange and correlation ................... 152
   Summary .................................................... 152
   8.1  The local spin density approximation (LSDA) ........... 152
   8.2  Generalized-gradient approximations (GGAs) ............ 154
   8.3  LDA and GGA expressions for the potential Vxcσ(r) ..... 157
   8.4  Non-collinear spin density ............................ 159
   8.5  Non-local density formulations: ADA and WDA ........... 160
   8.6  Orbital-dependent functionals I: SIC and LDA + U ...... 160
   8.7  Orbital-dependent functionals II: OEP and EXX ......... 162
   8.8  Hybrid functionals .................................... 165
   8.9  Tests of functionals .................................. 166
   Select further reading ..................................... 169
   Exercises .................................................. 170
9  Solving Kohn-Sham equations ................................ 172
   Summary .................................................... 172
   9.1  Self-consistent coupled Kohn-Sham equations ........... 172
   9.2  Total energy functionals .............................. 174
   9.3  Achieving self-consistency ............................ 179
   9.4  Force and stress ...................................... 182
   Select further reading ..................................... 184
   Exercises .................................................. 184

Part III Important preliminaries on atoms
10 Electronic structure of atoms .............................. 187
   Summary .................................................... 187
   10.1 One-electron radial Schrцdinger equation .............. 187
   10.2 Independent-particle equations: spherical potentials .. 189
   10.3 Open-shell atoms: non-spherical potentials ............ 190
   10.4 Relativistic Dirac equation and spin-orbit
        interactions .......................................... 193
   10.5 Example of atomic states: transition elements ......... 195
   10.6 Delta-SCF: electron addition, removal, and
        interaction energies .................................. 198
   10.7 Atomic sphere approximation in solids ................. 199
   Select further reading ..................................... 201
   Exercises .................................................. 202
11 Pseudopotentials ........................................... 204
   Summary .................................................... 204
   11.1 Scattering amplitudes and pseudopotentials ............ 204
   11.2 Orthogonalized plane waves (OPWs) and
        pseudopotentials ...................................... 207
   11.3 Model ion potentials .................................. 211
   11.4 Norm-conserving pseudopotentials (NCPPs) .............. 212
   11.5 Generation of l-dependent norm-conserving
        pseudopotentials ...................................... 215
   11.6 Unscreening and core corrections ...................... 218
   11.7 Transferability and hardness .......................... 219
   11.8 Separable pseudopotential operators and projectors .... 220
   11.9 Extended norm conservation: beyond the linear regime .. 221
   11.10 Ultrasoft pseudopotentials ........................... 222
   11.11 Projector augmented waves (PAWs): keeping the full
         wavefunction ......................................... 225
   11.12 Additional topics .................................... 227
   Select further reading ..................................... 228
   Exercises .................................................. 229

Part IV  Determination of electronic structure: the three
basic methods
12 Plane waves and grids: basics .............................. 236
   Summary .................................................... 236
   12.1 The independent-particle Schrцdinger equation in
        a plane wave basis .................................... 236
   12.2 The Bloch theorem and electron bands .................. 238
   12.3 Nearly-free-electron approximation .................... 239
   12.4 Form factors and structure factors .................... 240
   12.5 Approximate atomic-like potentials .................... 242
   12.6 Empirical pseudopotential method (EPM) ................ 243
   12.7 Calculation of density: introduction of grids ......... 246
   12.8 Real-space methods .................................... 248
   Select further reading ..................................... 251
   Exercises .................................................. 251
13 Plane waves and grids: full calculations ................... 254
   Summary .................................................... 254
   13.1 initio" pseudopotential method ........................ 255
   13.2 Projector augmented waves (PAWs) ...................... 258
   13.3 Simple crystals: structures, bands .................... 259
   13.4 Supercells: surfaces, interfaces, phonons, defects .... 265
   13.5 Clusters and molecules ................................ 269
   Select further reading ..................................... 270
   Exercises .................................................. 271
14 Localized orbitals: tight-binding .......................... 272
   Summary .................................................... 273
   14.1 Localized atom-centered orbitals ...................... 273
   14.2 Matrix elements with atomic orbitals .................. 274
   14.3 Slater-Koster two-center approximation ................ 278
   14.4 Tight-binding bands: illustrative examples ............ 279
   14.5 Square lattice and QuO2 planes ........................ 282
   14.6 Examples of bands: semiconductors and transition
        metals ................................................ 283
   14.7 Electronic states of nanotubes ........................ 285
   14.8 Total energy, force, and stress in tight-binding ...... 289
   14.9 Transferability: non-orthogonality and environment
        dependence ............................................ 291
   Select further reading ..................................... 293
   Exercises .................................................. 294
15 Localized orbitals: full calculations ...................... 298
   Summary .................................................... 298
   15.1 Solution of Kohn-Sham equations in localized bases .... 298
   15.2 Analytic basis functions: gaussians ................... 300
   15.3 Gaussian methods: ground state and excitation
        energies .............................................. 302
   15.4 Numerical orbitals .................................... 304
   15.5 Localized orbitals: total energy, force, and stress ... 307
   15.6 Applications of numerical local orbitals .............. 309
   15.7 Green's function and recursion methods ................ 310
   15.8 Mixed basis ........................................... 310
   Select further reading ..................................... 311
   Exercises .................................................. 311
16 Augmented functions: APW, KKR, MTO ......................... 313
   Summary .................................................... 313
   16.1 Augmented plane waves (APWs) and "muffin tins" ........ 313
   16.2 Solving APW equations: examples ....................... 318
   16.3 The KKR or multiple-scattering theory (MST) method .... 323
   16.4 Alloys and the coherent potential approximation
        (CPA) ................................................. 329
   16.5 Muffin-tin orbitals (MTOs) ............................ 331
   16.6 Canonical bands ....................................... 333
   16.7 Localized "tight-binding" MTO and KKR formulations .... 338
   16.8 Total energy, force, and pressure in augmented
        methods ............................................... 341
   Select further reading ..................................... 342
   Exercises .................................................. 342
17 Augmented functions: linear methods ........................ 345
   Summary .................................................... 345
   17.1 Energy derivative of the wavefunction: ψ and ψ ........ 346
   17.2 General form of linearized equations .................. 348
   17.3 Linearized augmented plane waves (LAPWs) .............. 350
   17.4 Applications of the LAPW method ....................... 351
   17.5 Linear muffin-tin orbital (LMTO) method ............... 355
   17.6 "Ab initio" tight-binding ............................. 358
   17.7 Applications of the LMTO method ....................... 360
   17.8 Beyond linear methods: NMTO ........................... 362
   17.9 Full potential in augmented methods ................... 364
   Select further reading ..................................... 365
   Exercises .................................................. 366

Part V  Predicting properties of matter from electronic
structure - recent developments
18 Quantum molecular dynamics (QMD) ........................... 371
   Summary .................................................... 371
   18.1 Molecular dynamics (MD): forces from the electrons .... 371
   18.2 Car-Parrinello unified algorithm for electrons and
        ions .................................................. 373
   18.3 Expressions for plane waves ........................... 376
   18.4 Alternative approaches to density functional QMD ...... 377
   18.5 Non-self-consistent QMD methods ....................... 378
   18.6 Examples of simulations ............................... 379
   Select further reading ..................................... 383
   Exercises .................................................. 384
19 Response functions: phonons, magnons ....................... 387
   Summary .................................................... 387
   19.1 Lattice dynamics from electronic structure theory ..... 388
   19.2 The direct approach: "frozen phonons," magnons ........ 390
   19.3 Phonons and density response functions ................ 394
   19.4 Green's function formulation .......................... 395
   19.5 Variational expressions ............................... 396
   19.6 Periodic perturbations and phonon dispersion curves ... 398
   19.7 Dielectric response functions, effective charges ...... 399
   19.8 Electron-phonon interactions and superconductivity .... 401
   19.9 Magnons and spin response functions ................... 402
   Select further reading ..................................... 403
   Exercises .................................................. 404
20 Excitation spectra and optical properties .................. 406
   Summary .................................................... 406
   20.1  Dielectric response for non-interacting particles .... 407
   20.2 Time-dependent density functional theory and linear
        response .............................................. 408
   20.3 Variational Green's function methods for dynamical
        linear response ....................................... 411
   20.4 Explicit real-time calculations ....................... 412
   20.5 Beyond the adiabatic local approximation .............. 416
   Select further reading ..................................... 416
   Exercises .................................................. 417
21 Wannier functions .......................................... 418
   Summary .................................................... 418
   21.1 Definition and properties ............................. 418
   21.2 "Maximally projected" Wannier functions ............... 421
   21.3 Maximally localized Wannier functions ................. 422
   21.4 Non-orthogonal localized functions .................... 428
   21.5 Wannier functions for "entangled bands" ............... 429
   Select further reading ..................................... 431
   Exercises .................................................. 432
22 Polarization, localization, and Berry's phases ............. 434
   Summary .................................................... 434
   22.1 Polarization: the fundamental difficulty .............. 436
   22.2 Geometric Berry's phase theory of polarization ........ 439
   22.3 Relation to centers of Wannier functions .............. 442
   22.4 Calculation of polarization in crystals ............... 442
   22.5 Localization: a rigorous measure ...................... 444
   22.6 Geometric Berry's phase theory of spin waves .......... 446
   Select further reading ..................................... 447
   Exercises .................................................. 447
23 Locality and linear scaling O(N) methods ................... 450
   Summary .................................................... 450
   23.1 Locality and linear scaling in many-particle quantum
        systems ............................................... 451
   23.2 Building the hamiltonian .............................. 454
   23.3 Solution of equations: non-variational methods ........ 455
   23.4 Variational density matrix methods .................... 463
   23.5 Variational (generalized) Wannier function methods .... 466
   23.6 Linear-scaling self-consistent density functional
        calculations .......................................... 469
   23.7 Factorized density matrix for large basis sets ........ 470
   23.8 Combining the methods ................................. 472
   Select further reading ..................................... 472
   Exercises .................................................. 473
24 Where to find more ......................................... 475
Appendix A  Functional equations .............................. 476
   Summary .................................................... 476
   A.1  Basic definitions and variational equations ........... 476
   A.2  Functionals in density functional theory including
        gradients ............................................. 477
   Select further reading ..................................... 478
   Exercises .................................................. 478
Appendix В  LSDA and GGA functionals .......................... 479
   Summary .................................................... 479
   B.l  Local spin density approximation (LSDA) ............... 479
   B.2  Generalized gradient approximation (GGAs) ............. 480
   B.3  GGAs: explicit РВЕ form ............................... 480
   Select further reading ..................................... 481
Appendix С  Adiabatic approximation ........................... 482
   Summary .................................................... 482
   C.1  General formulation ................................... 482
   C.2  Electron-phonon interactions .......................... 484
   Select further reading ..................................... 484
   Exercises .................................................. 484
Appendix D  Response functions and Green's functions .......... 485
   Summary .................................................... 485
   D.1  Static response functions ............................. 485
   D.2  Response functions in self-consistent field theories .. 486
   D.3  Dynamic response and Kramers-Kronig relations ......... 487
   D.4  Green's functions ..................................... 489
   Select further reading ..................................... 491
   Exercises .................................................. 491
Appendix E  Dielectric functions and optical properties ....... 492
   Summary .................................................... 492
   E.l  Electromagnetic waves in matter ....................... 492
   E.2  Conductivity and dielectric tensors ................... 494
   E.3  The/sum rule .......................................... 494
   E.4  Scalar longitudinal dielectric functions .............. 495
   E.5  Tensor transverse dielectric functions ................ 496
   E.6  Lattice contributions to dielectric response .......... 496
   Select further reading ..................................... 497
   Exercises .................................................. 498
Appendix F  Coulomb interactions in extended systems .......... 499
   Summary .................................................... 499
   F.1  Basic issues .......................................... 499
   F.2  Point charges in a background: Ewald sums ............. 500
   F.3  Smeared nuclei or ions ................................ 505
   F.4  Energy relative to neutral atoms ...................... 506
   F.5  Surface and interface dipoles ......................... 507
   F.6  Reducing effects of artificial image charges .......... 508
   Select further reading ..................................... 510
   Exercises .................................................. 510
Appendix G  Stress from electronic structure .................. 512
   Summary .................................................... 512
   G.l  Macroscopic stress and strain ......................... 512
   G.2  Stress from two-body pair-wise forces ................. 514
   G.3  Expressions in Fourier components ..................... 515
   G.4  Internalstrain ........................................ 516
   Select further reading ..................................... 517
   Exercises .................................................. 518
Appendix H  Energy and stress densities ....................... 519
   Summary .................................................... 519
   H.1  Energy density ........................................ 520
   H.2  Stress density ........................................ 523
   H.3  Applications .......................................... 524
   Select further reading ..................................... 527
   Exercises .................................................. 527
Appendix I  Alternative force expressions Summary ............. 530
   1.1  Variational freedom and forces ........................ 530
   1.2  Energy differences .................................... 532
   1.3  Pressure .............................................. 532
   1.4  Force and stress ...................................... 533
   1.5  Force in APW-type methods ............................. 534
   Select further reading ..................................... 534
Appendix J  Scattering and phase shifts ....................... 536
   Summary .................................................... 536
   J.l  Scattering and phase shifts for spherical
        potentials ............................................ 536
   Select further reading ..................................... 538
Appendix К  Useful relations and formulas ..................... 539
   Summary .................................................... 539
   K.l  Bessel, Neumann, and Hankel functions ................. 539
   K.2  Spherical harmonics and Legendre polynomials .......... 539
   K.3  Real spherical harmonics .............................. 540
   K.4  Clebsch-Gordon and Gaunt coefficients ................. 541
   K.5  Chebyshev polynomials ................................. 542
Appendix L  Numerical methods ................................. 543
   Summary .................................................... 543


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:18 2019. Размер: 29,186 bytes.
Посещение N 1738 c 08.04.2014