Rankin D.W.H. Structural methods in molecular inorganic chemistry (Chichester, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаRankin D.W.H. Structural methods in molecular inorganic chemistry / D.W.H.Rankin, N.W.Mitzel, C.A.Morrison. - Chichester: John Wiley & Sons Inc., 2013. - xii, 475 p.: ill. - Incl. bibl. ref. - Ind.: p.467-475. - ISBN 978-0-470-97278-6
 

Оглавление / Contents
 
Preface ...................................................... xiii
Companion Website .............................................. xv
Acknowledgements .............................................. xvn
Biographies ................................................... xix

1  Determining Structures - How and Why ......................... 1
   1.1  Structural chemistry - where did it come from? .......... 1
   1.2  Asking questions about structure ........................ 4
   1.3  Answering questions about structure ..................... 5
   1.4  Plan of the book ........................................ 7
   1.5  Supplementary information ............................... 8
2  Tools and Concepts ........................................... 9
   2.1  Introduction ............................................ 9
   2.2  How structural chemistry techniques work ............... 10
   2.3  Symmetry ............................................... 11
        2.3.1  Symmetry operations and elements ................ 13
        2.3.2  Point groups .................................... 15
        2.3.3  Characters, character tables and symmetry
               species ......................................... 17
   2.4  Electron density ....................................... 21
   2.5  Potential-energy surfaces .............................. 21
   2.6  Timescales ............................................. 24
   2.7  Structural definitions ................................. 26
   2.8  Sample preparation ..................................... 27
        2.8.1  Unstable species ................................ 27
        2.8.2  Solutions in supercritical fluids ............... 28
        2.8.3  Involatile species .............................. 28
        2.8.4  Variable temperature and pressure measurements .. 29
   2.9  Quantitative measurements .............................. 30
   2.10 Instrumentation ........................................ 32
        2.10.1 Radiation sources ............................... 32
        2.10.2 Detectors ....................................... 35
   2.11 Data analysis .......................................... 36
        2.11.1 Fourier transformation .......................... 36
        2.11.2 Experimental errors and uncertainties ........... 37
        2.11.3 Least-squares refinement ........................ 39
        2.11.4 Database mining ................................. 39
   Review questions ............................................ 41
   Discussion problems ......................................... 43
   References .................................................. 43
3  Theoretical Methods ......................................... 45
   3.1  Introduction ........................................... 45
   3.2  Approximating the multi-electron Schrфdinger equation .. 46
        3.2.1  The Hamiltonian operator, H ..................... 46
        3.2.2  The molecular wavefunction ...................... 49
   3.3  Exploring the potential-energy surface ................. 52
   3.4  Extending the computational model to the solid state ... 56
        3.4.1  Modeling a delocalized wavefunction, Ф;
               periodic boundary conditions .................... 58
        3.4.2  Approximating Я for solid-state structures ...... 60
        3.4.3  Exploring the potential-energy surface for
               solid-state structures .......................... 60
   3.5  Calculating thermodynamic properties ................... 61
   3.6  Calculating properties of chemical bonding ............. 63
   3.7  Comparing theory with experiment: geometry ............. 65
   3.8  Comparing theory with experiment: molecular
        properties ............................................. 68
        3.8.1  Vibrational spectra ............................. 69
        3.8.2  NMR, EPR and Mossbauer spectra .................. 69
        3.8.3  Molecular orbitals .............................. 70
        3.8.4  Electronic spectra .............................. 71
        3.8.5  Modeling solvent effects ........................ 73
   3.9  Combining theory and experiment ........................ 74
   Review questions ............................................ 75
   Discussion problems ......................................... 77
   References .................................................. 77
4  Nuclear Magnetic Resonance Spectroscopy ..................... 79
   4.1  Introduction ........................................... 79
   4.2  The nuclear magnetic resonance phenomenon .............. 79
   4.3  Experimental set-up .................................... 83
        4.3.1  NMR spectrometers ............................... 83
        4.3.2  Sample preparation .............................. 85
        4.3.3  Continuous wave and Fourier transform spectra ... 85
   4.4  The pulse technique .................................... 86
        4.4.1  Inducing magnetization by a pulse ............... 86
        4.4.2  Relaxation of magnetization after a pulse ....... 87
        4.4.3  Free induction decay and Fourier
               transformation .................................. 90
   4.5  Information from chemical shifts ....................... 92
        4.5.1  General principles .............................. 92
        4.5.2  Proton chemical shifts .......................... 94
        4.5.3  Chemical shifts of other elements ............... 96
   4.6  Information from NMR signal intensities ............... 100
   4.7  Simple splitting patterns due to coupling between
        nuclear spins ......................................... 101
        4.7.1  First-order spectra of spin-1/2 isotopes of
               100% abundance ................................. 101
        4.7.2  Nuclear spin systems ........................... 102
        4.7.3  Coupling to spin-1/2 isotopes of low
               abundance ...................................... 106
        4.7.4  Spectra of spin-1/2 isotopes of low abundance .. 107
        4.7.5  Coupling to quadrupolar nuclei ................. 110
   4.8  Information from coupling constants ................... 112
        4.8.1  General principles ............................. 112
        4.8.2  One-bond coupling .............................. 112
        4.8.3  Two-bond coupling .............................. 114
        4.8.4  Coupling over three bonds ...................... 114
        4.8.5  Coupling over more than three bonds ............ 115
        4.8.6  Coupling through space ......................... 116
   4.9  Not-so-simple spectra ................................. 116
        4.9.1  Second-order spectra ........................... 116
        4.9.2  Chiral and prochiral non-equivalence ........... 119
        4.9.3  Coincidences ................................... 119
   4.10 The multi-nuclear approach ............................ 120
   4.11 Multiple resonance .................................... 121
        4.11.1 Selective spin decoupling ...................... 122
        4.11.2 Spin decoupling ................................ 123
        4.11.3 Triple resonance ............................... 124
        4.11.4 The Nuclear Оverhauser Effect .................. 125
        4.11.5 Gated decoupling ............................... 126
   4.12 Multi-pulse methods ................................... 126
        4.12.1 Introduction ................................... 126
        4.12.2 Sensitivity enhancement by polarization
               transfer ....................................... 127
        4.12.3 Spectrum editing ............................... 129
   4.13 Two-dimensional NMR spectroscopy ...................... 129
        4.13.1 General principles and homonuclear
               correlation experiments ........................ 129
        4.13.2 Heteronuclear correlation experiments .......... 134
        4.13.3 Two-dimensional nuclear Overhauser effect
               spectra ........................................ 136
        4.13.4 Diffusion ordered spectroscopy (DOSY) .......... 138
   4.14 Gases ................................................. 140
   4.15 Liquid crystals ....................................... 140
   4.16 Solids ................................................ 141
   4.17 Monitoring dynamic phenomena and reactions ............ 147
        4.17.1 Intramolecular dynamic phenomena ............... 147
        4.17.2 Exchange reactions and equilibria .............. 149
        4.17.3 Monitoring reactions: identification of
               intermediates .................................. 151
   4.18 Paramagnetic compounds ................................ 154
   Review questions ........................................... 159
   Discussion problems ........................................ 161
   References ................................................. 166
5  Electron Paramagnetic Resonance Spectroscopy ............... 169
   5.1 The electron paramagnetic resonance experiment ......... 169
   5.2 Hyperfine coupling in isotropic systems ................ 171
   5.3 Anisotropic systems .................................... 175
        5.3.1 Hyperfine splittings and g factors .............. 175
        5.3.2 Electron-electron interactions .................. 176
   5.4 Transition-metal complexes ............................. 179
   5.5 Multiple resonance ..................................... 182
   Review questions ........................................... 184
   Discussion problems ........................................ 186
   References ................................................. 187
6  Mуssbauer Spectroscopy ..................................... 189
   6.1  Introduction .......................................... 189
   6.2  The Mуssbauer effect .................................. 189
   6.3  Experimental arrangements ............................. 192
   6.4  Information from Mуssbauer spectroscopy ............... 194
        6.4.1  The isomer shift ............................... 194
        6.4.2  Quadrupole splitting ........................... 198
        6.4.3  Magnetic splitting ............................. 202
   6.5  Compound identification ............................... 204
        6.5.1  The interhalogen compound I2Br2Cl2 ............. 205
        6.5.2  Iron in very high oxidation states - Fe(V)
               and Fe(VI) nitride complexes ................... 206
   6.6  Temperature-and time-dependent effects ................ 208
        6.6.1  Basic iron acetates ............................ 209
        6.6.2  Spin crossover in the complex
               [Fe(phen)2(NCS)2] .............................. 210
        6.6.3  Valence fluctuation ............................ 211
   6.7  Common difficulties encountered in Mуssbauer
        spectroscopy .......................................... 212
   6.8  Further possibilities in Mуssbauer spectroscopy ....... 213
   Review questions ........................................... 213
   Discussion problems ........................................ 214
   References ................................................. 217
7  Rotational Spectra and Rotational Structure ................ 219
   7.1  Introduction .......................................... 219
   7.2  The rotation of molecules ............................. 219
        7.2.1  Classical rotation ............................. 219
        7.2.2  Quantized rotation, moments of inertia and
               rotation constants ............................. 220
        7.2.3  Centrifugal distortion; the semi-rigid rotor ... 223
   7.3  Rotational selection rules ............................ 224
        7.3.1  Pure rotation spectra .......................... 224
        7.3.2  Vibration-rotation spectra ..................... 225
   7.4  Instrumentation ....................................... 228
   7.5  Using the information in a spectrum ................... 229
        7.5.1  Fingerprinting ................................. 229
        7.5.2  Determination of rotation constants ............ 230
   7.6  Using rotation constants to define molecular
        structures ............................................ 232
   Review questions ........................................... 234
   Discussion problems ........................................ 235
   References ................................................. 236
8  Vibrational Spectroscopy ................................... 237
   8.1  Introduction .......................................... 237
   8.2  The physical basis; molecular vibrations .............. 237
        8.2.1  Vibrational motions and energies ............... 237
        8.2.2  Non-ideal restoring forces; anharmonicity ...... 238
   8.3  Observing molecular vibrations ........................ 239
        8.3.1  Absorption in the infrared ..................... 239
        8.3.2  Raman scattering ............................... 242
        8.3.3  Resonance Raman spectroscopy ................... 242
        8.3.4  Inelastic scattering of neutrons and
               electrons ...................................... 244
   8.4  Effects of phase on spectra ........................... 245
   8.5  Vibrational spectra and symmetry ...................... 248
        8.5.1  Fundamental vibrational selection rule ......... 248
        8.5.2  Symmetry selection rules ....................... 248
        8.5.3  Symmetry of an entire set of normal
               vibrations ..................................... 249
        8.5.4  Symmetry of vibrational modes .................. 251
   8.6  Assignment of bands to vibrations ..................... 254
        8.6.1  Raman polarization ............................. 255
        8.6.2  Band contours in gases ......................... 256
        8.6.3  Intensities of allowed fundamentals ............ 259
        8.6.4  Mode numbering ................................. 260
        8.6.5  Non-fundamental transitions .................... 260
   8.7  Complete empirical assignment of vibrational spectra .. 262
   8.8  Information from vibrational spectra .................. 263
        8.8.1  Quantitative information ....................... 263
        8.8.2  Qualitative information ........................ 264
        8.8.3  Transition-metal carbonyl complexes ............ 267
        8.8.4  Use of isotopes in interpreting and assigning
               vibrational spectra ............................ 269
   8.9  Normal coordinate analysis ............................ 272
   Review questions ........................................... 273
   Discussion problems ........................................ 274
   References ................................................. 276
9  Electronic Characterization Techniques ..................... 277
   9.1  Introduction .......................................... 277
   9.2  Electron energy levels in molecules ................... 278
   9.3  Symmetry and molecular orbitals ....................... 279
   9.4  Photoelectron spectroscopy ............................ 281
        9.4.1  Observing valence-shell electrons .............. 281
        9.4.2  Vibrational structure of PE bands .............. 281
        9.4.3  Structural information from valence-shell PE
               spectroscopy: making assignments ............... 285
        9.4.4  Observing core-shell electrons ................. 286
   9.5  Valence excitation spectroscopy ....................... 286
        9.5.1  Experimental methods ........................... 286
        9.5.2  The information in an electronic spectrum ...... 288
   9.6  Electronic energy levels and transitions in
        transition-metal complexes ............................ 289
        9.6.1  Metal, ligand and metal-ligand bonding levels .. 289
        9.6.2  Selection rules ................................ 290
        9.6.3  Ligand-ligand and metal-metal transitions ...... 292
        9.6.4  Metal-ligand and ligand-metal (charge-
               transfer) bands ................................ 295
        9.6.5  Inter-valence transitions ...................... 295
        9.6.6  Assigning bands of transition-metal complexes .. 296
        9.6.7  Spectra of compounds of elements with partly-
               filled f sub-shells (lanthanides and
               actinides) ..................................... 297
   9.7  Circular dichroism .................................... 298
   Review questions ........................................... 299
   Discussion problems ........................................ 300
   References ................................................. 302
10 Diffraction Methods ........................................ 303
   10.1 Introduction .......................................... 303
   10.2 Diffraction of electrons, neutrons and X-rays ......... 304
   10.3 Diffraction by gases .................................. 308
        10.3.1 Experimental set-up ............................ 308
        10.3.2 Theoretical basis of gas-phase diffraction ..... 309
        10.3.3 Interpretation of results ...................... 314
        10.3.4 Problems with underdetermined structures ....... 315
        10.3.5 Experimental limitations ....................... 320
   10.4 Diffraction by liquids ................................ 321
   10.5 Diffraction by single crystals; symmetry .............. 323
        10.5.1 The unit cell .................................. 324
        10.5.2 Symmetry elements within the unit cell ......... 324
        10.5.3 The seven crystal systems ...................... 326
        10.5.4 Three-dimensional periodic symmetry; space
               groups ......................................... 329
   10.6 Diffraction by single crystals; the theoretical
        basis ................................................. 329
   10.7 Diffraction by single crystals; the experiment ........ 333
        10.7.1 Crystal growth ................................. 333
        10.7.2 Experimental set-up ............................ 334
        10.7.3 Indexing and determining unit cell dimensions .. 336
        10.7.4 Data collection ................................ 337
        10.7.5 Experimental problems: X-ray absorption and
               extinction ..................................... 338
        10.7.6 Data analysis .................................. 338
   10.8 Diffraction by single crystals; interpretation of
        results ............................................... 341
        10.8.1 How good is a structure? ....................... 341
        10.8.2 Common problems: incorrect atom assignment ..... 343
        10.8.3 Common problems: disorder ...................... 344
        10.8.4 Recognizing chemical bonds ..................... 347
        10.8.5 Absolute structure determination ............... 348
        10.8.6 How big can we go? ............................. 348
   10.9 Diffraction by single crystals; electron density
        determination ......................................... 349
   10.10 Topological features of the electron density ......... 352
         10.10.1 Displaying topological features of the
                 electron density ............................. 353
         10.10.2 Definition of a topological atom and its
                 properties ................................... 354
         10.10.3 Critical points .............................. 355
         10.10.4 Bonding description .......................... 356
         10.10.5 The Laplacian of the electron density ........ 358
         10.10.6 Some examples of electron topology studies ... 360
   10.11 Phase dependence of molecular structures ............. 363
   10.12 Diffraction of neutrons by crystals .................. 365
   10.13 Diffraction by powders ............................... 368
   10.14 High-pressure crystallography ........................ 368
   10.15 Extended X-ray absorption fine structure ............. 371
   Review questions ........................................... 375
   Discussion problems ........................................ 377
   References ................................................. 381
11 Mass Spectrometry .......................................... 383
   11.1 Introduction .......................................... 383
   11.2 Experimental arrangements ............................. 383
        11.2.1 Ion sources .................................... 383
        11.2.2 Mass analyzers and detectors ................... 384
   11.3 Data analysis ......................................... 387
        11.3.1 Molecular ions ................................. 387
        11.3.2 Fragmentation .................................. 389
   11.4 Combined mass spectrometry methods .................... 392
        11.4.1 Tandem mass spectrometry (MS/MS) ............... 392
        11.4.2 Chromatography-coupled mass spectrometry ....... 394
   Review questions ........................................... 396
   Discussion problems ........................................ 397
   References ................................................. 397
12 Case Histories ............................................. 399
   12.1 Introduction .......................................... 399
   12.2 Xenon compounds ....................................... 400
        12.2.1 Xenon hexafluoride ............................. 400
        12.2.2 Xenon-xenon bonds - strange but true ........... 404
   12.3 The structure of N2O3 ................................. 407
   12.4 Bismuthine ............................................ 409
   12.5 Tetrahydroborates ..................................... 410
   12.6 Is beryllocene a sandwich compound? ................... 415
   12.7 Silylium cations - free at last ....................... 418
   12.8 True phosphinous acids ................................ 422
   12.9 Dihydrogen and dihydride complexes .................... 425
   12.10 Agostic interactions: alkyl hydrogen atoms binding
         to metal atoms ....................................... 428
   12.11 Lower symmetry than expected in some phosphines and
         phosphoranes ......................................... 430
   12.12 Three-membered rings with dative bonds? .............. 432
   12.13 Stable radicals ...................................... 436
         12.13.1 Nitrogen radicals ............................ 436
         12.13.2 Jack-in-the-box compounds .................... 438
   12.14 Induced proton transfer in an adduct of squaric
         acid and bipyridine .................................. 441
   12.15 High-pressure studies of metal organic framework
         materials ............................................ 443
   12.16 Mistaken identity: mono-coordinate copper(I) and
         silver(I) complexes .................................. 446
   12.17 Oxidation states in a palladium-tin complex .......... 447
   12.18 Structural and spectroscopic consequences of a
         chemical change in an iron complex ................... 450
   12.19 Some metalloproteins ................................. 454
         12.19.1 Fixing N2 from air ........................... 455
         12.19.2 Making oxygen from water ..................... 457
   12.20 Atoms inside fullerene cages ......................... 459
   12.21 Structural chemistry - where is it going? ............ 463
   Discussion problem ......................................... 464
   References ................................................. 464
Index ......................................................... 467


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:26:04 2019. Размер: 27,752 bytes.
Посещение N 1902 c 03.12.2013