Gatski T.B. Compressibility, turbulence and high speed flow (Oxford; Amsterdam, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGatski T.B. Compressibility, turbulence and high speed flow / T.B.Gatski, J.-P.Bonnet. - Oxford; Amsterdam: Elsevier, 2009. - xii, 283 p.: ill. - Ref.: p.247-273. - Ind.: p.275-283. - ISBN 978-0-08-044565-6
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ xi
1  Kinematics, thermodynamics and fluid transport properties .... 1
   1.1  Kinematic preliminaries ................................. 3
        1.1.1  Motion of material elements ...................... 4
        1.1.2  Deformation ...................................... 5
        1.1.3  Reynolds transport theorem ....................... 8
   1.2  Equilibrium thermodynamics .............................. 9
   1.3  Compressible subsonic and supersonic flows ............. 12
   1.4  Turbulent flows and compressible turbulence ............ 16
2  The dynamics of compressible flows .......................... 21
   2.1  Mass conservation ...................................... 21
   2.2  Momentum conservation .................................. 22
        2.2.1  Surface forces: the stress tensor ............... 24
        2.2.2  Body forces ..................................... 26
   2.3  Energy conservation .................................... 26
   2.4  Solenoidal velocity fields and density changes ......... 30
   2.5  Two-dimensional flow and a Reynolds analogy ............ 35
3  Compressible turbulent flow ................................. 39
   3.1  Averaged and filtered variables ........................ 39
        3.1.1  Reynolds average ................................ 40
        3.1.2  Average over fixed phase ........................ 41
        3.1.3  Temporal LES filters ............................ 42
        3.1.4  Spatial LES filters ............................. 43
   3.2  Density-weighted variables ............................. 44
   3.3  Transport equations for the mean/resolved field ........ 51
   3.4  Fluctuation transport equations ........................ 59
   3.5  Momentum and thermal flux relationships ................ 64
        3.5.1  Strong Reynolds analogy ......................... 64
        3.5.2  Morkovin's hypothesis ........................... 75
4  Measurement and analysis strategies ......................... 79
   4.1  Experimental constraints for supersonic flows .......... 79
        4.1.1  Constraints on wind tunnel testing .............. 80
        4.1.2  Constraints on data collection and measurement
               apparatus ....................................... 83
   4.2  Measurement methods .................................... 88
        4.2.1  Intrusive method: hot-wire anemometry ........... 88
               Anemometers and probes .......................... 89
               Data reduction .................................. 92
        4.2.2  Non-intrusive methods ........................... 95
               With particles: LDV, PIV and DGV ................ 95
               Without particles: Rayleigh-scattering
               methods ........................................ 100
   4.3  Analysis using modal representations .................. 105
   4.4  Reynolds-and Favre-averaged correlations .............. 113
5  Prediction strategies and closure models ................... 117
   5.1  Direct numerical simulations .......................... 117
   5.2  Large eddy simulations and hybrid methods ............. 121
   5.3  Closure of the Reynolds-averaged Navier-Stokes
        equations ............................................. 127
        5.3.1  Differential turbulent stress transport
               equations ...................................... 128
               Turbulent stress and kinetic energy transport
               equations ...................................... 128
               Turbulent stress anisotropy transport
               equation ....................................... 131
        5.3.2  Turbulent energy dissipation rate .............. 135
               Solenoidal dissipation rate transport
               equation ....................................... 137
               Dilatation dissipation rate .................... 144
        5.3.3  Pressure-strain rate correlation ............... 147
        5.3.4  Scalar flux modelling .......................... 153
               Heat flux ...................................... 154
               Mass flux ...................................... 156
        5.3.5  Other closure issues ........................... 158
               Polynomial representations for second-moments
               and scalar fluxes .............................. 159
               Wall proximity effects ......................... 160
6  Compressible shear layers .................................. 161
   6.1  Free shear flows ...................................... 161
        6.1.1  Jets ........................................... 162
        6.1.2  Mixing-layers .................................. 165
               Flow structure ................................. 166
               Spreading rate ................................. 170
        6.1.3  Wakes .......................................... 185
               Base flows ..................................... 185
               Flat plate wakes ............................... 188
   6.2  Wall-bounded flows .................................... 190
        6.2.1  Thermal and velocity fields .................... 191
               Mean thermal field ............................. 193
               Mean velocity field ............................ 196
               Turbulent field ................................ 202
        6.2.2  Skin-friction and shape factor ................. 205
7  Shock and turbulence interactions .......................... 211
   7.1  Homogeneous turbulence interactions ................... 211
        7.1.1  Application of linear theory ................... 211
        7.1.2  Numerical simulations .......................... 218
        7.1.3  Comparison with experimental results ........... 225
   7.2  Inhomogeneous turbulence interaction .................. 232
        7.2.1  Free shear flows ............................... 232
               Jet/shock wave interactions .................... 233
               Mixing-layer/shock wave interactions ........... 235
               Wake/shock wave interactions ................... 236
        7.2.2  Wall-bounded flows ............................. 238

References .................................................... 247
Index ......................................................... 275


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:04 2019. Размер: 10,103 bytes.
Посещение N 1575 c 03.12.2013