Cremer J.T. Neutron and x-ray optics (Waltham, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаCremer J.T. Neutron and x-ray optics / J.T.Cremer, Jr. - Waltham: Elsevier, 2013. - xvii, 1105 p.: ill. - (Elsevier insights). - Incl. bibl. ref. - ISBN 978-0-12-407164-3
 

Место хранения: 016 | Библиотека Института ядерной физики СО РАН | Новосибирск

Оглавление / Contents
 
1  Introduction ................................................. 1
   1.1  Refractive Index for Neutrons and X-rays ............... 13
   1.2  CRLs - Thin-Lens Approximation: Focal Length, Ray
        Path Lengths, and Attenuation .......................... 23
   1.3  CRL Arrays ............................................. 47
        1.3.1  One-to-One Imaging .............................. 49
        1.3.2  Magnified Imaging ............................... 51
   1.4  Integration on the Complex Plane-Cauchy-Riemann
        Theorem, Cauchy Integration, and Residues .............. 54
   1.5  Derivation of the Complex Refractive Index of
        Material Medium (e.g., Lenses) Based on the Rayleigh
        Scatter of X-rays and Gammas ........................... 67
        1.5.1  The Electromagnetic Wave Equation in a Vacuum
               or Dielectric Medium ............................ 67
        1.5.2  Electromagnetic Field Produced by an
               Accelerated Charge .............................. 80
        1.5.3  Acceleration of a Bound Atomic Electron by an
               Imposed Electromagnetic Field ................... 96
        1.5.4  Extraction of the Complex Refractive Index
               from the Electromagnetic Wave Equation ......... 103
        1.5.5  Scatter, Absorption, Total Cross Section for
               Electromagnetic Waves (X-rays) ................. 114
        1.5.6  Derivation of the Optical Theorem .............. 122
        1.5.7  Derivation of the Kramers - Kronig Relation
               and Calculation of the Refractive Decrement 
               from the Measured Attenuation Cross Section .... 127
   1.6  Refractive of Gammas via Rayleigh and Delbriick
        Scatter ............................................... 141
   1.7  Historical Introduction to Gamma Lenses-The Dirac
        Equation and the Delbriick Effect ..................... 143
        1.7.1  Refractive Index and Attenuation Cross
               Section for the Delbriick Refraction of
               Gammas ......................................... 144
        1.7.2  Gamma Refractive Optics-Experimental Results ... 150
   References ................................................. 155
2  Neutron Refractive Index in Materials and Fields ........... 161
   2.1  Calculation of General Refractive Decrement for
        Material or Magnetic Media ............................ 161
   2.2  Comparison of the Electron, Neutron, X-ray, and Light
        Refractive Index ...................................... 163
   2.3  Neutron Decrement for Composite Materials, and
        Neutron Refraction Due to Decrement Gradient .......... 168
   2.4  Neutron Decrement and Refractive Index in
        a Gravitational Field ................................. 169
   2.5  Neutron Spin and Magnetic Dipole Moment Vectors in
        Applied Magnetic Fields ............................... 171
   2.6  Potential Energy, Force, and Decrement for Neutrons
        in Applied Magnetic Fields ............................ 175
   2.7  The Bloch Equation and Neutron Precession in an
        Applied Magnetic Field ................................ 179
   2.8  Temperature Effect on Neutron Spin and Magnetic
        Dipole Moment Orientation in an Applied Magnetic
        Field ................................................. 181
   2.9  The Bloch Equation and the Lorentz Force Equation ..... 182
   2.10 Average Spin Polarization of a Neutron in an Applied
        Magnetic Field ........................................ 184
   2.11 Equation of Motion of the Expected Value of the
        Neutron Spin Vector in an Applied Magnetic Field ...... 186
   2.12 Expected Values of Quantum Mechanical Quantities
        Follow Classical Trajectories ......................... 190
   2.13 Average Spin Polarization of a Beam of Neutrons in
        an Applied Magnetic Field ............................. 196
   2.14 Adiabatic and Nonadiabatic Polarization Rotation
        About Magnetic Field Lines That Change Direction ...... 197
   2.15 Magnetic Resonance .................................... 199
   2.16 Ferromagnetic Materials-Domains, Magnetization,
        Permeability, Susceptibility .......................... 205
   2.17 Law of Refraction of Magnetic Field Lines ............. 207
   2.18 Ferromagnetic Materials with Applied Magnetic Fields
        and the Hysteresis Loop ............................... 210
   2.19 Calculation of the Magnetization Vector from
        Unpaired Atomic Electron Magnetic Dipole Moments ...... 211
   2.20 Calculation of the Tangential Component of the
        Magnetization Vector from Magnetic Field Boundary
        Conditions ............................................ 214
   2.21 Calculation of the Neutron Potential Energy and
        Magnetic Scatter Length from the Tangential
        Component of the Magnetization Vector ................. 215
   2.22 Refractive Decrement and Index for a Neutron in a
        Ferromagnetic Material ................................ 217
   References ................................................. 220
3  Magnetic Neutron Scatter from Magnetic Materials ........... 221
   3.1  Partial Differential Cross Section for Neutron
        Scatter in Magnetic Materials ......................... 221
   3.2  The Transition Matrix Element for Neutron Magnetic
        Scatter ............................................... 225
   3.3  Boltzmann Thermal Distribution of Initial Scatter
        System States ......................................... 226
   3.4  Magnetic Fields of Unpaired Atomic Electrons in
        Magnetic Materials .................................... 229
   3.5  Neutron Magnetic Potential Energy due to the Total
        Electron Magnetic Dipole Moment ....................... 231
   3.6  Neutron Magnetic Potential Energy Due to the
        Electron Spin Magnetic Dipole Moment .................. 233
   3.7  Neutron Magnetic Potential Energy Due to the
        Electron Orbital Magnetic Dipole Moment ............... 236
   3.8  Evaluation of the Matrix Element for the Neutron
        Magnetic Potential Energy ............................. 237
   3.9  Electron Magnetic Dipole Moment Operator for
        Unpaired Atomic Electrons ............................. 240
   3.10 Magnetic Dipole Moment Operator and Magnetization
        Vector- the Spin Component ............................ 243
   3.11 Magnetic Dipole Moment Operator and Magnetization
        Vector- the Orbital Component ......................... 245
   3.12 Magnetic Dipole Moment Operator Relation with
        Magnetization Vector .................................. 251
   3.13 Evaluation of the Neutron Magnetic Potential Energy
        Operator .............................................. 253
   3.14 Evaluation of Transition Matrix Element with Neutron
        Spin Eigenstates ...................................... 256
   3.15 Coherent, Elastic Differential Cross Section
        Expressed by a Magnetization Vector ................... 258
   3.16 Coherent, Elastic Differential Cross Section
        Expressed by Electron Spin Density .................... 260
   3.17 Magnetization Determined from Measuring Bragg Peak
        Intensity ............................................. 261
   References ................................................. 267
4  LS Coupling Basis for Magnetic Neutron Scatter ............. 269
   4.1  Summation and Coupling of Atomic Electron Spin and
        Orbital Angular Momentum .............................. 269
   4.2  Spin and Orbital Angular Momentum in Two- and Three-
        Electron Atoms ........................................ 271
   4.3  Spin and Orbital Angular Momentum for an JV-Electron
        Atom .................................................. 273
   4.4  LS Coupling and the Pauli Exclusion Principle ......... 275
   4.5  Eigenfunctions and the Schrodinger Equation for a
        Two-Electron Atom ..................................... 276
   4.6  Antisymmetric and Symmetric Eigenfunctions Describe
        an Identical Electron Pair ............................ 278
   4.7  Two-Electron Atom-Symmetric Spatial and
        Antisymmetric Spin Components ......................... 280
   4.8  Two-Electron Atom - Antisymmetric Spatial and
        Symmetric Spin Components ............................. 280
   4.9  N-Electron System Described by an Antisymmetric
        Total Eigenfunction ................................... 282
   4.10 The Physical Basis of LS Coupling of Electron Spin
        and Orbital Motion .................................... 283
   4.11 Derivation of Thomas Precession Factor for LS
        Coupling .............................................. 287
   4.12 An Alternative Derivation of the Thomas Precession
        Factor ................................................ 292
   4.13 Quenching of an Electron Orbital Momentum in a
        Crystal ............................................... 294
   4.14 Paramagnetic and Ferromagnetic Materials .............. 296
   References ................................................. 298
5  LS-Coupled, Localized Electron, Magnetic Scatter of
   Neutrons ................................................... 299
   5.1  Heitler-London Model for Neutron Scatter by Magnetic
        Materials ............................................. 299
   5.2  Evaluation of the Unpaired, Atomic Electron,
        Magnetic Dipole Moment Transition Matrix Element
        (Qs(k,0)) ............................................. 305
   5.3  The Magnetic Form Factor .............................. 307
   5.4  Partial and Differential Cross Section Expressions
        for a Quenched Magnetic Crystal ....................... 308
   5.5  Evaluation of Partial and Differential Cross Section
        Expressions for a Quenched Magnetic Crystal-
        Separation of Unpaired, Atomic Electron Spatial and
        Spin Components ....................................... 311
   5.6  Evaluation of the Thermal Average of Initial State,
        Unpaired, Atomic Electron Positions ................... 314
   5.7  Partial Differential Cross Section for the
        LS-Coupled, Heitler - London Model in a Quenched
        Crystal with Unpaired, Localized Atomic Electron
        Spin .................................................. 317
   5.8  Partial Differential Cross Section for an
        LS-Coupled, Heitler - London Model in a Quenched
        Crystal with Unpaired, Localized Atomic Electron
        Spin and Orbital Current .............................. 321
   5.9  Coherent, Elastic Differential Cross Section for an
        LS-Coupled, Heitler - London Model in a Quenched
        Crystal with Unpaired, Localized Atomic Electron
        Spin and Orbital Current .............................. 325
   5.10 Expression of Partial Differential Cross Section by
        Intermediate Correlation Function ..................... 327
   References ................................................. 331
6  Magnetic Scatter of Neutrons in Paramagnetic Materials ..... 333
   6.1  General Expression for Coherent, Elastic
        Differential Cross Section for Paramagnetic Material
        in an Applied Magnetic Field .......................... 333
   6.2  Coherent, Elastic Differential Cross Section for
        Paramagnetic Material in an Applied Magnetic Field
        Expressed by the Total Spin Quantum Number for a
        Paramagnetic Atom ..................................... 337
   6.3  Coherent, Differential Cross Section for Elastic
        Neutron Scatter in Paramagnetic Material-With an
        Applied Magnetic Field at Low and High Temperatures ... 340
   6.4  Coherent, Differential Cross Section for Elastic
        Neutron Scatter in Paramagnetic Material-No Applied
        Magnetic Field ........................................ 342
   6.5  Coherent, Elastic Differential Cross Section for
        Scatter of Neutron Spin States from Localized
        Electrons in Paramagnetic Materials- No Applied
        Magnetic Field ........................................ 343
   References ................................................. 351
7  Neutron Scatter in Ferromagnetic, Antiferromagnetic,
   and Helical Magnetic Materials ............................. 353
   7.1  Coherent, Elastic Differential Cross Section for
        Magnetic Neutron Scatter in Ferromagnetic Materials-
        Localized Unpaired Electrons .......................... 353
   7.2  Antiferromagnetic Materials - Coherent, Elastic
        Differential Cross Section for Neutron Scatter from
        Localized Unpaired Electrons .......................... 358
   7.3  Coherent, Elastic Differential Cross Section for
        Magnetic and Nuclear Scatter of Neutron Spin States
        in a Bravais-Lattice Ferromagnetic Crystal -
        Localized Unpaired Electrons .......................... 362
   7.4  Coherent, Elastic Differential Cross Section for
        Magnetic and Nuclear Scatter of Neutron Spin States
        in a Non-Bravais-Lattice Ferromagnetic Crystal -
        Localized Unpaired Electrons .......................... 365
   7.5  Production and Measurement of Polarized Neutrons by
        Ferromagnetic Materials ............................... 372
   7.6  General Expression for the Coherent Differential
        Cross Section for Nuclear and Magnetic Elastic
        Scatter of Neutron Spin States in Ferromagnetic
        Materials - Localized or Delocalized Unpaired
        Electrons ............................................. 375
   7.7  Polarized Neutrons by Grazing Incidence Reflection
        via Nuclear Scatter of Neutron Spin States in
        Ferromagnetic Materials ............................... 377
   7.8  Coherent, Elastic Differential Cross Section for
        Scatter of Neutron Spin States from Magnetic
        Materials with Helical-Oriented, Localized, Unpaired
        Electron Spins ........................................ 379
   References ................................................. 391
8  Coherent, Inelastic, Magnetic Neutron Scatter, Spin Waves,
   and Magnons ................................................ 393
   8.1  Electron Spin, Magnetic Dipole Moment, and
        Precession in Applied Magnetic Field .................. 393
   8.2  No Magnetic Field-Unpaired Electron Spins Tend to
        Align in the Same Direction ........................... 396
   8.3  Heisenberg Model of Unpaired Electron Spin in
        Magnetic Materials .................................... 397
   8.4  Physical Basis of Exchange Integral in the
        Heisenberg Model ...................................... 399
   8.5  Expression of the Heisenberg Hamiltonian by Spin
        Operators ............................................. 404
   8.6  Ferromagnetic Materials-Spin Waves, Dispersion
        Relation, and Magnons ................................. 407
   8.7  Antiferromagnetic Materials-Spin Wave Dispersion
        Relation .............................................. 411
   8.8  Exchange and Anisotropy Energy and Domain Formation
        in Magnetic Materials ................................. 414
   8.9  Hamiltonian Eigenequation for 1-D Ferromagnetic Spin
        Lattice ............................................... 419
   8.10 Spin and Spin Deviation Operators, Creation and
        Annihilation Operators, Holstein-Primakoff
        Transformations, and Linear Approximation of
        Heisenberg Hamiltonian ................................ 423
   8.11 Application of the Bloch Theorem to Express Creation
        and Annihilation Operators ............................ 426
   8.12 The Heisenberg Hamiltonian Expressed as a Sum of
        Harmonic Oscillators .................................. 429
   8.13 Coherent, Inelastic Partial Differential Cross
        Section for One-Magnon Absorption or Emission for
        Neutron Scatter in a Ferromagnetic Crystal ............ 432
   8.14 Coherent Inelastic Neutron Scatter - One-Magnon
        Exchange in Ferromagnetic Material .................... 442
   8.15 Integral Expression for Temperature Dependence of
        Spin and Magnetization in a Ferromagnetic Crystal
        Based on the Planck Distribution ...................... 445
   8.16 Evaluation of Low-Temperature Spin and Magnetization
        of the Integral Expression for a Cubic Ferromagnetic
        Crystal- T3/2 Dependence .............................. 449
   8.17 Magnon Population Low-Temperature Dependence in a
        Ferromagnetic Cubic Crystal ........................... 451
   References ................................................. 454
9  Coherent, Elastic Scatter of Neutrons by Atomic Electric
   Field ...................................................... 455
   9.1  Spin-Orbit Electric Field Scatter of Neutrons ......... 455
   9.2  Foldy Electric Field Scatter of Neutrons .............. 461
   9.3  Scatter of Neutrons by Nuclear and Electric Field
        Interactions in a Non-Bravais Lattice Crystal ......... 463
   Reference .................................................. 472
10 Diffractive X-ray and Neutron Optics ....................... 473
   10.1 Derivation of Helmholtz - Kirchhoff Integral
         Theorem  ............................................. 473
   10.2 Derivation of the Kirchhoff - Fresnel Diffraction
        Equation .............................................. 476
   10.3 The Obliquity Factor in the Kirchhoff-Fresnel
        Diffraction Equation .................................. 479
   10.4 The Paraxial Approximation Applied to the Kirchhoff-
        Fresnel Diffraction Equation .......................... 480
   10.5 Fraunhofer Diffraction of X-rays or Neutrons from a
        Rectangular Aperture .................................. 487
   10.6 Fraunhofer Diffraction of X-ray or Neutron Line
        Source by a Parallel Single Slit ...................... 488
   10.7 Fraunhofer Diffraction of X-ray or Neutron Line
        Source by a Parallel Slit Pair ........................ 491
   10.8 Fraunhofer Diffraction of an X-ray or a Neutron Line
        Source from N Parallel Slits .......................... 493
   10.9 Fraunhofer Diffraction from Gratings Is Archetype
        for Coherent, Elastic Scatter of X-ray or Neutrons
        from Material Lattices ................................ 499
   10.10 Abbe Theory of Imaging Applied to X-rays or
         Neutrons ............................................. 504
   10.11 Fraunhofer Diffraction of X-rays or Neutrons from
         a Circular Aperture .................................. 506
   10.12 Huygens-Fresnel Approach: The Kirchhoff Equation
         for a Compound Refractive Lens with X-rays or
         Neutrons ............................................. 509
   10.13 Compound Refractive Fresnel Lens for X-rays and
         Neutrons ............................................. 515
   10.14 Fresnel Diffraction of X-rays or Neutrons from
         a Circular Aperture .................................. 525
   10.15 Fresnel Diffraction of X-rays or Neutrons from
         a Rectangular Aperture ............................... 528
   10.16 Fresnel Diffraction of X-rays or Neutrons from
         a Knife Edge ......................................... 532
   10.17 Fresnel Zone Plates (FZP) for X-rays or Neutrons ..... 533
   10.18 X-ray or Neutron Achromat Fabricated from FZPs and
         CRLs ................................................. 535
   10.19 The Helmholtz Differential Equation for X-rays and
         Neutrons ............................................. 538
   10.20 Derivation of the Helmholtz Paraxial Equation for a
         Gaussian, Spherical X-ray Laser Beam ................. 540
   10.21 Solution of the Helmholtz Paraxial Equation for a
         Gaussian, Spherical X-ray Laser Beam ................. 543
   References ................................................. 554
11 Kirchhoff Equation Solution for CRL, Pinhole, and Phase
   Contrast Imaging ........................................... 555
   11.1 Kirchhoff Equation with a 1-D Biconcave, Parabolic,
        or Spherical CRL and Thin-Sample Approximation for
        X-rays or Neutrons with Gravity ....................... 555
   11.2 Derivation of Kirchhoff Equation with a 2-D
        Biconcave Parabolic or Spherical CRL for X-rays or
        Neutrons with Gravity - Thick Sample .................. 571
   11.3 Biconcave, Parabolic CRL - Image Amplitude
        Distribution for Incoherent X-rays or Neutrons with
        Gravity ............................................... 587
        11.3.1 Amplitude in the y-Direction Parallel to the
               Direction of Gravity ........................... 588
        11.3.2 Amplitude in the x-Direction Perpendicular to
               the Direction of Gravity ....................... 593
        11.3.3 Object Transmission Function ................... 594
        11.3.4 Integration in the y-Direction in the Object
               Plane .......................................... 595
        11.3.5 Integration in the x-Direction in the Object
               Plane .......................................... 600
        11.3.6 Amplitude in the Image Plane Along the x- and
               y-Directions ................................... 600
   11.4 Point Spread Function (PSF) of the Biconcave,
        Parabolic CRL for Incoherent X-rays or Neutrons with
        Gravity ............................................... 603
   11.5 PSF of a Pinhole for Incoherent X-rays or Neutrons
        with Gravity .......................................... 611
   11.6 The Modulation Transfer Function ...................... 614
   11.7 The Modulation Transfer Function (MTF) with a
        Biconcave, Parabolic CRL for Incoherent X-rays or
        Neutrons with Gravity ................................. 615
   11.8 Field of View (FOV) with a Biconcave, Parabolic CRL
        for Incoherent X-rays or Neutrons with Gravity ........ 621
   11.9 Image Intensity Distribution of a Biconcave,
        Parabolic CRL for Coherent X-rays or Neutrons with
        Gravity ............................................... 624
   11.10 Biconcave, Parabolic CRL Image Intensity
         Distribution for Incoherent X-rays or Neutrons with
         Gravity-Coherent Amplitude Cross Terms Set to Zero ... 634
   11.11 Without CRL-Phase Contrast Imaging for Incoherent
         X-rays or Neutrons with Gravity ...................... 641
   11.12 Special Case of a Merged Object Plane and Source
         Plane ................................................ 649
   11.13 Stationary Phase Approach Applied to an Image
         Amplitude Integral of a Spherical, Biconcave CRL
         for Incoherent X-rays or Neutrons with Gravity ....... 651
   References ................................................. 659
12 Electromagnetic Fields of Moving Charges, Electric and
   Magnetic Dipoles ........................................... 661
   12.1 Maxwell's Equations and the Lienard-Wiechert
        Potentials ............................................ 661
   12.2 The Lorentz Gauge and the Helmholtz Theorem ........... 667
   12.3 Calculation of Scalar and Vector Potentials of an
        Oscillating Electric Dipole ........................... 671
   12.4 Calculation of a Magnetic Field of an Oscillating
        Electric Dipole via the Vector Potential .............. 674
   12.5 Calculation of the Electric Field Emitted from an
        Oscillating Electric Dipole ........................... 675
   12.6 Conversion of Electric and Magnetic Fields from MKS
        Units to CGS Units .................................... 679
   12.7 Near- and Far-Zone Electric Fields and Power
        Emission from an Oscillating Electric Dipole .......... 681
   12.8 Frequency and Wave - Number Domain Expressions for
        Electric and Magnetic Fields Emission and Power from
        the Oscillating Electric Dipole ....................... 683
   12.9 Binomial Expansion of the Vector Potential of a
        Moving Charge Includes Contributions from Electric
        and Magnetic Dipole and Electric Quadrupole Moments ... 687
   12.10 Transformation of the Fields and Vector Potential
         of the Electric Dipole to the Magnetic Dipole ........ 691
   12.11 Electric and Magnetic Fields and Power Emission
         from an Oscillating Magnetic Dipole .................. 694
   12.12 Derivation of the Electric Field of a Charge in
         Arbitrary Motion from Lienard-Wiechert Potentials .... 697
   12.13 Derivation of the Magnetic Field of a Charged
         Particle in Arbitrary Motion from Lienard-Wiechert
         Potentials ........................................... 705
   12.14 Poynting Vector and Electromagnetic Energy Radiated
         from an Arbitrary Accelerated Charge per Solid
         Angle per Frequency Interval ......................... 708
   12.15 Calculation of the Electron Trajectory in
         Synchrotron Ring Insertion Devices ................... 715
   12.16 Simplified Velocity-Dependent Expression for the
         per Solid Angle Frequency Spectrum Emitted by
         Accelerated Charged Particles ........................ 719
   12.17 Bremsstrahlung and Electromagnetic Wave
         Polarization ......................................... 727
   12.18 Net Neutron Magnetic Dipole Moment Produced in an
         Ultracold Neutron Population with Applied Magnetic
         Field, and Possibilities for Population Inversion .... 734
   12.19 Energy Radiated per Solid Angle for a Moving
         Magnetic Dipole Moment of Neutrons and Charged
         Particles ............................................ 739
   12.20 Relation of a Magnetization Vector of a Moving
         Charge with a Polarization Vector of a Stationary
         Charge ............................................... 745
   References ................................................. 748
13 Special Relativity, Electrodynamics, Least Action, and
   Hamiltonians ............................................... 751
   13.1 Special Relativity - Minkowski Space and Invariant
        Space-Time Distance ................................... 751
   13.2 Special Relativity - Length Contraction ............... 754
   13.3 Special Relativity - Time Dilation .................... 756
   13.4 Special Relativity - Lorentz Transformation of Space -
        Time Position ......................................... 757
   13.5 Special Relativity - Lorentz Transformation with
        Position and Velocity Four-Vectors .................... 760
   13.6 Special Relativity - Four-Vector and Lorentz
        Transformation Representation in Minkowski Space ...... 762
   13.7 Special Relativity - Velocity, Mass, Momentum, and
        Energy ................................................ 765
   13.8 Radiated Power from an Accelerated Charge Moving at
        Nonrelativistic Velocity via the Nonrelativistic
        Lamor Formula and Lorentz Transformation at an
        Instant of Time ....................................... 769
   13.9 Special Relativity - Electromagnetic Four-Vectors ..... 776
   13.10 Special Relativity - Electromagnetic Fields and
         Potentials as Four-Vectors ........................... 778
   13.11 Special Relativity - The Electromagnetic Field
         Tensor ............................................... 780
   13.12 The Maxwell Stress Tensor ............................ 786
   13.13 Force Density and the Maxwell Stress Tensor .......... 789
   13.14 The Principle of Least Action and the Lagrangian
         Yields Euler-Lagrange Equations ...................... 796
   13.15 Derivation of the Hamiltonian from the Lagrangian .... 799
   13.16 Derivation of the Lagrangian for Relativistic
         Charged Particle in an Electromagnetic Field ......... 802
   13.17 Euler-Lagrange Equation for Langrangian Density for
         Real Scalar Fields ................................... 809
   References ................................................. 812
14 The Klein-Gordon and Dirac Equations ....................... 813
   14.1 Relativistic Correct Schrodinger Wave Equation - the
        Klein-Gordon Equation ................................. 813
   14.2 The Dirac Wave Equation for Spin 1/2 Particles -
        Overview .............................................. 815
   14.3 Derivation of the Dirac Equation that Predicts
        Correct LS Coupling Term for Unpaired Atomic
        Electrons in Magnetic Neutron Scatter ................. 817
   14.4 Solution of the Dirac Equation for a Free Particle .... 823
   14.5 A Useful Vector Property with the Pauli Spin Matrix ... 829
   14.6 Dirac Equation for Bound Electron-Proton Interaction
        - The Basis of LS Coupling ............................ 830
   14.7 Second Term HD2 of the Dirac Equation for Bound
        Electron - Proton Interaction that Includes a LS
        Coupling Term ......................................... 835
   14.8 Third Term HD3 of the Dirac Equation for Bound
        Electron - Proton Interaction ......................... 838
   14.9 Magnetic Field of a Proton Current in an Electron
        Rest Frame Expressed by the Proton Magnetic Dipole
        Moment Vector and Electron Orbit Radius ............... 844
   14.10 Evaluated Dirac Equation for Bound Electron - Proton
         Interaction that Predicts LS Coupling and Hyperfine
         Interactions ......................................... 848
   14.11 Equation of Motion for Electron Spin, Orbital, and
         Total Angular Momentum Vectors ....................... 851
   14.12 Derivation of the Dirac Equation for the Hydrogen
         Atom - Step 1: Evaluation of α • p in the Dirac
         Hamiltonian .......................................... 857
   14.13 Derivation of the Dirac Equation for the Hydrogen
         Atom - Step 2: Evaluation of σ • L in a Dirac
         Hamiltonian α • p Term ............................... 860
   14.14 Derivation of the Dirac Equation for a Hydrogen
         Atom - Step 3: Introduction of the Squared Angular
         Momentum Operator K2 in a Dirac Hamiltonian .......... 864
   14.15 Derivation of the Dirac Equation for a Hydrogen
         Atom - Step 4: Obtain a Pair of Coupled First-Order
         Differential Equations from the Developed Dirac
         Hamiltonian .......................................... 865
   14.16 Asymptotic Solution - A Coupled, Dirac
         Eigenequation Pair for the Hydrogen Atom ............. 869
   14.17 Regular Solution of the Coupled, Dirac
         Eigenequation Pair and Electron Energy Formula for
         the Hydrogen Atom .................................... 873
   14.18 Quantum Number Relationships in the Dirac Electron
         Energy Formula for a Hydrogen Atom ................... 880
   14.19 The Nuclear Electric Quadrupole Potential ............ 886
   References ................................................. 888
15 Neutron and X-ray Optics in General Relativity and
   Cosmology .................................................. 889
   15.1 Special and General Relativity - History and
        Relation to Neutron and X-ray Optics .................. 889
   15.2 Equivalence Principle, Manifolds, Parallel Vector
        Translation, and Covariant Derivatives ................ 891
   15.3 Surfaces and Gauss's Remarkable Theorem, Gaussian
        Curvature, and Metric Coefficients .................... 893
   15.4 Curvilinear Coordinate Systems ........................ 897
   15.5 Metric Tensor and Invariant Distance in Coordinate
        System Transformations ................................ 901
   15.6 Metric Tensor and Invariant Area and Volume in
        Coordinate System Transformations ..................... 904
   15.7 Curvilinear Coordinate Systems and the Jacobian
        Determinant ........................................... 905
   15.8 Metric Coefficients, Jacobian Determinant, and
        Cartesian-to-Curvilinear Coordinate System
        Transformation ........................................ 910
   15.9 Variation of Physical Quantity by Displacement-
        Scalar and Vector Fields .............................. 914
   15.10 Invariance, Summation Convention, and Contravariant
         Vectors .............................................. 918
   15.11 Natural Basis Vectors are Tangent to Surfaces in a
         Contravariant Vector Space ........................... 920
   15.12 Geometric View of Contravariant Representation of
         a Vector ............................................. 923
   15.13 Geometric View of Covariant (Dual) Representation
         of a Vector .......................................... 925
   15.14 Covariant Vectors Transformation Is Similar to the
         Gradient of a Scalar Function ........................ 928
   15.15 Dual Basis Vectors are Normal to Surfaces in the
         Covariant Vector Space ............................... 931
   15.16 Covariant and Contravariant Tensors, Pseudo and
         Polar Scalars, Vectors, and Tensors .................. 933
   15.17 Natural and Dual Basis Vectors are Reciprocals ....... 937
   15.18 Natural and Dual Basis Vectors and the Metric
         Tensor ............................................... 939
   15.19 Differentials in Curvilinear Coordinates, Curved
         Surfaces, and Parallel Transport ..................... 943
   15.20 Absolute and Covariant Derivatives of Vectors with
         Contravariant Representation ......................... 947
   15.21 Absolute and Covariant Derivatives of Vectors and
         Tensors with Covariant Representation ................ 950
   15.22 Geodesic Curves and Connection Coefficients
         Expressed by a Metric Tensor ......................... 953
   15.23 Gradient of a Vector in Curvilinear Coordinates ...... 958
   15.24 Cylindrical Coordinate System - Covariant and
         Contravariant Metric Coefficients and Connection
         Coefficients ......................................... 962
   15.25 Spherical Coordinate System - Covariant and
         Contravariant Metric Coefficients and Connection
         Coefficients ......................................... 965
   15.26 Newton's Laws and Maxwell's Equations in General
         Relativity ........................................... 967
   15.27 The Curvature, Ricci, and Einstein Tensors and the
         Curvature or Ricci Scalar ............................ 970
   15.28 The Stress Tensor, Universe Fluid Model, and the
         Equation of Continuity and Motion .................... 975
   15.29 Einstein Field Equations ............................. 978
   15.30 Hilbert Derived Einstein Field Equations from the
         Principle of Least Action ............................ 981
   15.31 Gravity Waves Derived from Linearized Einstein
         Field Equations for the Weak Gravity Condition ....... 984
   15.32 Schwarzschild Solution to Einstein Field Equations
         and Experimental Predictions ......................... 994
   15.33 The Friedmann Equation and Cosmological Issues ...... 1006
   References ................................................ 1013
16 Radiation Imaging Systems and Performance ................. 1015
   16.1 Liouville's Theorem, the Vlasov Equation, and the
        Continuity Equation .................................. 1015
   16.2 Fraction of Source Intensity Intercepted and
        Focused by Lens ...................................... 1023
   16.3 Depth of Field of a Lens ............................. 1024
   16.4 Radiation Dose Rate and Radiation Shielding .......... 1026
   16.5 Imaging System Modulation Transfer Function (MTF) .... 1030
   16.6 Rose Model, Contrast, Detective Quantum Efficiency
        (DQE), and Noise Power Spectrum (NPS) ................ 1033
   16.7 Derivation of DQE from NPS, Contrast, Gain, and MTF .. 1036
   16.8 Criteria for Sample Feature Imaging .................. 1041
   16.9 Imaging System Performance - Receiver Operating
        Characteristic (ROC), Positive and Negative
        Likelihood, and Positive and Negative Predictive
        Value Curves ......................................... 1043
   16.10 Reliable Detection of a Signal in the Presence of
         Background and Noise ................................ 1047
   References ................................................ 1051
17 Neutron and Charged Particle Magnetic Optics .............. 1053
   17.1 Charged Particle Motion in Axial Symmetric Magnetic
        Field-Busch's Theorem ................................ 1053
   17.2 Paraxial Ray Equation and Focusing of Charged
        Particles by an Axial Symmetric Magnetic Field ....... 1056
   17.3 Paraxial Ray Equation for Azimuthally Symmetric
        Magnetic and Electric Fields and Busch's Theorem
        Derived from the Least-Action Principle .............. 1060
   17.4 Multipole Magnetic Fields and Lenses for Charged
        Particles ............................................ 1062
   17.5 FODO Quadrupole Magnetic Lens Pair for Charged
        Particles ............................................ 1067
   17.6 Neutron Trajectory in Magnetic Fields and Magnetic
        Field Gradient Focusing of Neutrons .................. 1070
   17.7 Neutron Compound Cylindrical Magnetic Lens ........... 1073
   17.8 Calculation of Magnetic Fields of Planar Magnets by
        Paired Magnetic Charge Sheets ........................ 1076
   17.9 1-D Magnetic Gravitational Trap for Ultracold
        Neutrons ............................................. 1083
   17.10 Electron Trajectory in Wigglers and Undulator
         X-ray Sources ....................................... 1087
   17.11 Derivation of Emitted X-ray Wavelength, Bandwidth,
         and Cone Angle for the Undulator .................... 1091
   17.12 X-ray Power and Differential Power Emission per
         Solid Angle from an Undulator ....................... 1094

References ................................................... 1103


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:04 2019. Размер: 42,378 bytes.
Посещение N 1849 c 03.12.2013