Bhattacharya A. Nonparametric inference on manifolds: with applications to shape spaces (Cambridge; New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBhattacharya A. Nonparametric inference on manifolds: with applications to shape spaces / A.Bhattacharya, R.Bhattacharya. - Cambridge; New York: Cambridge Univ. Press, 2012. - xiii, 237 p.: ill. - Ref.: p.229-234. - Ind.: p.235-237. - ISBN 978-1-107-01958-4
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Commonly used notation ......................................... ix
Preface ........................................................ xi

1  Introduction ................................................. 1
2  Examples ..................................................... 8
   2.1  Data example on S1: wind and ozone ...................... 8
   2.2  Data examples on S2: paleomagnetism ..................... 8
   2.3  Data example on ∑2k shapes of gorilla skulls ........... 12
   2.4  Data example on ∑2k: brain scan shapes of
        schizophrenic and normal patients ...................... 15
   2.5  Data example on affine shape space A2k: application
        to handwritten digit recognition ....................... 17
   2.6  Data example on reflection similarity shape space R3k
        glaucoma detection ..................................... 18
   2.7  References ............................................. 20
3  Location and spread on metric spaces ........................ 21
   3.1  Introduction ........................................... 21
   3.2  Location on metric spaces .............................. 22
   3.3  Variation on metric spaces ............................. 27
   3.4  Asymptotic distribution of the sample mean ............. 28
   3.5  Asymptotic distribution of the sample variation ........ 30
   3.6  An example: the unit circle ............................ 31
   3.7  Data example on S1 ..................................... 34
   3.8  References ............................................. 35
4  Extrinsic analysis on manifolds ............................. 36
   4.1  Extrinsic mean and variation ........................... 36
   4.2  Asymptotic distribution of the sample extrinsic mean ... 37
   4.3  Asymptotic distribution of the sample extrinsic
        variation .............................................. 39
   4.4  Asymptotic joint distribution of the sample extrinsic
        mean and variation ..................................... 41
   4.5  Two-sample extrinsic tests ............................. 42
   4.6  Hypothesis testing using extrinsic mean and variation .. 46
   4.7  Equivariant embedding .................................. 48
   4.8  Extrinsic analysis on the unit sphere Sd ............... 49
   4.9  Applications on the sphere ............................. 51
   4.10 References ............................................. 55
5  Intrinsic analysis on manifolds ............................. 57
   5.1  Intrinsic mean and variation ........................... 57
   5.2  Asymptotic distribution of the sample intrinsic mean ... 59
   5.3  Intrinsic analysis on Sd ............................... 64
   5.4  Two-sample intrinsic tests ............................. 65
   5.5  Data example on S2 ..................................... 69
   5.6  Some remarks ........................................... 71
   5.7  References ............................................. 75
6  Landmark-based shape spaces ................................. 77
   6.1  Introduction ........................................... 77
   6.2  Geometry of shape manifolds ............................ 78
   6.3  References ............................................. 80
7  Kendall's similarity shape spaces ∑mk ....................... 82
   7.1  Introduction ........................................... 82
   7.2  Geometry of similarity shape spaces .................... 83
   7.3  References ............................................. 86
8  The planar shape space ∑2k .................................. 87
   8.1  Introduction ........................................... 87
   8.2  Geometry of the planar shape space ..................... 88
   8.3  Examples ............................................... 89
   8.4  Intrinsic analysis on the planar shape space ........... 90
   8.5  Other Fréchet functions ................................ 96
   8.6  Extrinsic analysis on the planar shape space ........... 97
   8.7  Extrinsic mean and variation ........................... 98
   8.8  Asymptotic distribution of the sample extrinsic mean ... 99
   8.9  Two-sample extrinsic tests on the planar shape space .. 101
   8.10 Planar size-and-shape manifold ........................ 103
   8.11 Applications .......................................... 105
   8.12 References ............................................ 109
9  Reflection similarity shape spaces R∑mk .................... 110
   9.1  Introduction .......................................... 110
   9.2  Extrinsic analysis on the reflection shape space ...... 111
   9.3  Asymptotic distribution of the sample extrinsic mean .. 117
   9.4  Two-sample tests on the reflection shape spaces ....... 122
   9.5  Other distances on the reflection shape spaces ........ 123
   9.6  Application: glaucoma detection ....................... 125
   9.7  References ............................................ 128
10 Stiefel manifolds VKm ...................................... 130
   10.1 Introduction .......................................... 130
   10.2 Extrinsic analysis on Vk,m ............................ 130
   10.3 References ............................................ 134
11 Affine shape spaces A∑mk ................................... 135
   11.1 Introduction .......................................... 135
   11.2 Geometry of affine shape spaces ....................... 137
   11.3 Extrinsic analysis on affine shape spaces ............. 139
   11.4 Asymptotic distribution of the sample extrinsic mean .. 141
   11.5 Application to handwritten digit recognition .......... 144
   11.6 References ............................................ 146
12 Real projective spaces and projective shape spaces ......... 147
   12.1 Introduction .......................................... 147
   12.2 Geometry of the real projective space fig.1Pm ............. 148
   12.3 Geometry of the projective shape space P0mk .......... 149
   12.4 Intrinsic analysis on fig.1Pm ............................. 150
   12.5 Extrinsic analysis on fig.1Pm ............................. 151
   12.6 Asymptotic distribution of the sample extrinsic mean .. 153
   12.7 References ............................................ 155
13 Nonparametric Bayes inference on manifolds ................. 156
   13.1 Introduction .......................................... 156
   13.2 Density estimation on metric spaces ................... 157
   13.3 Full support and posterior consistency ................ 158
   13.4 Posterior computations ................................ 163
   13.5 Application to unit sphere Sd ......................... 165
   13.6 Application to the planar shape space ∑2k ............. 166
   13.7 Application to morphometries: classification of
        gorilla skulls ........................................ 168
   13.8 Proofs of theorems .................................... 170
   13.9 References ............................................ 181
14 Nonparametric Bayes regression, classification and
   hypothesis testing on manifolds ............................ 182
   14.1 Introduction .......................................... 182
   14.2 Regression using mixtures of product kernels .......... 183
   14.3 Classification ........................................ 185
   14.4 Nonparametric Bayes testing ........................... 192
   14.5 Examples .............................................. 196
   14.6 Proofs ................................................ 202
   Appendix A  Differentiable manifolds ....................... 209
   Appendix В  Riemannian manifolds ........................... 214
   Appendix С  Dirichlet processes ............................ 218
   Appendix D  Parametric models on Sd and ∑2k ................ 225

References .................................................... 229
Index ......................................................... 235


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:04 2019. Размер: 12,406 bytes.
Посещение N 1419 c 03.12.2013