Han W. Plasticity: mathematical theory and numerical analysis (New York, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHan W. Plasticity: mathematical theory and numerical analysis / W.Han, B.D.Reddy. - 2nd ed. - New York: Springer, 2013. - xv, 421 p.: ill. - (Interdisciplinary applied mathematics; 9). - Ref.: p.405-414. - Ind.: p.415-421. - ISBN 978-1-4614-5939-2
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface to the Second Edition ................................. VII
Preface to the First Edition ................................... IX

Part I Continuum Mechanics and Elastoplasticity Theory
1  Preliminaries ................................................ 3
   1.1  Introduction ............................................ 3
   1.2  Some Historical Remarks ................................. 5
   1.3  Notation ................................................ 9
2  Continuum Mechanics and Linearized Elasticity ............... 15
   2.1  Kinematics ............................................. 16
   2.2  Balance of Momentum; Stress ............................ 22
   2.3  Linearly Elastic Materials ............................. 27
   2.4  Isotropic Elasticity ................................... 29
   2.5  A Thermodynamic Framework for Elasticity ............... 32
   2.6  Initial-Boundary and Boundary Value Problems for
        Linearized Elasticity .................................. 36
   2.7  Thermodynamics with Internal Variables ................. 37
3  Elastoplastic Media ......................................... 41
   3.1  Physical Background and Motivation ..................... 41
   3.2  Three-Dimensional Elastoplastic Behavior ............... 47
   3.3  Examples of Yield Criteria ............................. 61
   3.4  Yield Criteria for Dilatant Materials .................. 66
        3.4.1  Examples ........................................ 66
        3.4.2  A further note on non-smooth yield surfaces ..... 69
   3.5  Hardening Laws ......................................... 70
   3.6  Single-crystal Plasticity .............................. 74
   3.7  Strain-gradient Plasticity ............................. 82
        3.7.1  Polycrystalline plasticity ...................... 82
        3.7.2  Gradient single-crystal plasticity .............. 87
   3.8  Bibliographical Remarks ................................ 94
4  The Plastic Flow Law in a Convex-Analytic Setting ........... 95
   4.1  Some Results from Convex Analysis ...................... 96
   4.2  Basic Plastic Flow Relations of Elastoplasticity ...... 106
   4.3  Strain-gradient Plasticity ............................ 117
        4.3.1  The Aifantis model ............................. 118
        4.3.2  Polycrystalline strain-gradient plasticity ..... 119
        4.3.3  Strain-gradient single-crystal plasticity ...... 121

Part II The Variational Problems of Elastoplasticity

5  Basics of Functional Analysis and Function Spaces .......... 125
   5.1  Results from Functional Analysis ...................... 125
   5.2  Function Spaces ....................................... 135
        5.2.1  The Spaces Cm(Ω), Сm(Ω), and Lp(Ω) ............. 135
        5.2.2  Sobolev Spaces ................................. 139
        5.2.3  Spaces of Vector-Valued Functions .............. 147
6  Variational Equations and Inequalities ..................... 151
   6.1  Variational Formulation of Elliptic Boundary Value
        Problems .............................................. 151
   6.2  Elliptic Variational Inequalities ..................... 163
   6.3  Parabolic Variational Inequalities .................... 171
   6.4  Qualitative Analysis of an Abstract Problem ........... 174
7  The Primal Variational Problem of Elastoplasticity ......... 187
   7.1  Classical Elastoplasticity with Hardening ............. 189
        7.1.1  Variational formulation ........................ 189
        7.1.2  Analysis of the problem ........................ 195
   7.2  Classical Single-crystal Plasticity ................... 201
   7.3  Strain-gradient Plasticity ............................ 203
        7.3.1  The Aifantis model ............................. 203
        7.3.2  The Gurtin model of strain-gradient
               plasticity ..................................... 204
   7.4  Strain-gradient Single-crystal Plasticity ............. 213
        7.4.1  Weak formulation of the problem ................ 213
        7.4.2  Well-posedness ................................. 215
   7.5  Stability Analysis .................................... 219
8  The Dual Variational Problem of Classical
   Elastoplasticity ........................................... 225
   8.1  The Dual Variational Problem .......................... 226
   8.2  Analysis of the Stress Problem ........................ 230
   8.3  Analysis of the Dual Problem .......................... 242
   8.4  Rate Form of Stress-Strain Relation ................... 246

Part III Numerical Analysis of the Variational Problems

9  Introduction to Finite Element Analysis .................... 251
   9.1  Basics of the Finite Element Method ................... 253
   9.2  Affine Families of Finite Elements .................... 255
   9.3  Local Interpolation Error Estimates ................... 259
   9.4  Global Interpolation Error Estimates .................. 265
10 Approximation of Variational Problems ...................... 269
   10.1 Approximation of Elliptic Variational Equations ....... 269
   10.2 Numerical Approximation of Elliptic Variational
        Inequalities .......................................... 273
   10.3 Approximation of Parabolic Variational Inequalities ... 282
11 Approximations of the Abstract Problem ..................... 285
   11.1 Spatially Discrete Approximations ..................... 286
   11.2 Time-Discrete Approximations .......................... 288
   11.3 Fully Discrete Approximations ......................... 295
   11.4 Convergence Under Minimal Regularity .................. 301
12 Numerical Analysis of the Primal Problem ................... 319
   12.1 Error Analysis of Discrete Approximations of the
        Primal Problem ........................................ 320
        12.1.1 Problems of classical elastoplasticity with
               hardening ...................................... 320
        12.1.2 Problems of strain-gradient plasticity ......... 329
   12.2 Solution Algorithms ................................... 337
   12.3 Convergence Analysis of the Solution Algorithms ....... 348
   12.4 Regularization Technique and A Posteriori Error
        Analysis .............................................. 355
   12.5 Fully Discrete Schemes with Numerical Integration ..... 363
13 Numerical Analysis of the Dual Problem ..................... 371
   13.1 Time-Discrete Approximations of the Stress Problem .... 373
   13.2 Time-Discrete Approximations of the Dual Problem ...... 379
   13.3 Fully Discrete Approximations of the Dual Problem ..... 383
   13.4 Predictor-Corrector Algorithms ........................ 393
   13.5 Computation of the Closest-Point Projections .......... 401

References .................................................... 405
Index ......................................................... 415


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:00 2019. Размер: 10,765 bytes.
Посещение N 1614 c 26.11.2013