Argyros I.K. Numerical methods for equations and its applications (Boca Raton, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаArgyros I.K. Numerical methods for equations and its applications / I.K.Argyros, Y.J.Cho, S.Hilout. - Boca Raton: CRC Press/Taylor & Francis, 2012. - viii, 465 p.: ill. - Bibliogr.: p.415-462. - Ind.: p.463-465. - ISBN 978-1-57808-753-2
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ......................................................... v
1  Introduction ................................................. 1
2  Newton's Method ............................................. 10
   2.1  Convergence Under Fr'echet Differentiability ........... 10
   2.2  Convergence Under Twice Fr'echet Differentiability ..... 38
   2.3  Newton's method on unbounded domains ................... 51
   2.4  Continuous Analog of Newton's method ................... 59
   2.5  Interior Point Techniques .............................. 63
   2.6  Regular smoothness ..................................... 70
   2.7  ω-convergence .......................................... 81
   2.8  Semilocal Convergence and Convex Majorants ............. 90
   2.9  Local Convergence and Convex Majorants ................ 102
   2.10 Majorizing Sequences .................................. 110
   2.11 Upper Bounds for Newton's Method ...................... 125
3  Secant method .............................................. 135
   3.1  Convergence ........................................... 135
   3.2  Least Squares Problems ................................ 146
   3.3  Nondiscrete Induction and Secant Method ............... 154
   3.4  Nondiscrete Induction and a Double Step Secant
        Method ................................................ 163
   3.5  Directional Secant Methods ............................ 175
   3.6  Efficient Three Step Secant Methods ................... 195
4  Steffensen's Method ........................................ 208
   4.1  Convergence ........................................... 208
5  Gauss-Newton method ........................................ 218
   5.1  Convergence ........................................... 218
   5.2  Average-Lipschitz Conditions .......................... 228
6  Newton-type methods ........................................ 250
   6.1  Convergence with Outer Inverses ....................... 250
   6.2  Convergence of a Moser-type Method .................... 264
   6.3  Convergence with Slantly Differentiable Operator ...... 271
   6.4  A intermediate Newton Method .......................... 279
7  Inexact Methods ............................................ 293
   7.1  Residual control Conditions ........................... 293
   7.2  Average Lipschitz Conditions .......................... 306
   7.3  Two-step Methods ...................................... 312
   7.4  Zabrejko-Zincenko-type Conditions ..................... 326
8  Werner's Method ............................................ 335
   8.1  Convergence Analysis .................................. 335
9  Halley's Method ............................................ 344
   9.1 Local Convergence ...................................... 344
10 Methods for variational inequalities ....................... 353
   10.1 Subquadratic Convergent Method ........................ 353
   10.2 Convergence Under Slant Condition ..................... 360
   10.3 Newton-Josephy Method ................................. 369
11 Fast two-step methods ...................................... 385
   11.1  Semilocal Convergence ................................ 385
12 Fixed Point Methods ........................................ 399
   12.1 Successive Substitutions Methods ...................... 399
Bibliography .................................................. 415
Index ......................................................... 463


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:52 2019. Размер: 7,191 bytes.
Посещение N 1563 c 19.11.2013