Aoki S. Markov bases in algebraic statistics (New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAoki S. Markov bases in algebraic statistics / S.Aoki, H.Hara, A.Takemura. - New York: Springer, 2012. - xi, 298 p.: ill. - (Springer series in statistics). - Ref.: p. 287-293. - Ind.: p.295-298. - ISBN 978-1-4614-3718-5
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Part I  Introduction and Some Relevant Preliminary Material

1  Exact Tests for Contingency Tables and Discrete
   Exponential Families ......................................... 3
   1.1  Independence Model of 2 × 2 Two-Way Contingency
        Tables .................................................. 3
   1.2  2x2 Contingency Table Models as Discrete Exponential
        Family .................................................. 8
   1.3  Independence Model of General Two-Way Contingency
        Tables ................................................. 10
   1.4  Conditional Independence Model of Three-Way
        Contingency Tables ..................................... 14
        1.4.1  Normalizing Constant of Hypergeometric
               Distribution for the Conditional Independence
               Model ........................................... 18
   1.5  Notation of Hierarchical Models for m-Way
        Contingency Tables ..................................... 19
2  Markov Chain Monte Carlo Methods over Discrete
   Sample Space ................................................ 23
   2.1  Constructing a Connected Markov Chain over
        a Conditional Sample Space: Markov Basis ............... 23
   2.2  Adjusting Transition Probabilities by Metropolis-
        Hastings Algorithm ..................................... 27
3  Toric Ideals and Their Gröbner Bases ........................ 33
   3.1  Polynomial Ring ........................................ 33
   3.2  Term Order and Grobner Basis ........................... 35
   3.3  Buchberger's Algorithm ................................. 38
   3.4  Elimination Theory ..................................... 39
   3.5  Toric Ideals ........................................... 39

Part II  Properties of Markov Bases

4  Definition of Markov Bases and Other Bases .................. 47
   4.1  Discrete Exponential Family ............................ 47
   4.2  Definition of Markov Basis ............................. 50
   4.3  Properties of Moves and the Lattice Basis .............. 51
   4.4  The Fundamental Theorem of Markov Basis ................ 54
   4.5  Grobner Basis from the Viewpoint of Markov Basis ....... 59
   4.6  Graver Basis, Lawrence Lifting, and Logistic
        Regression ............................................. 60
5  Structure of Minimal Markov Bases ........................... 65
   5.1  Accessibility by a Set of Moves ........................ 65
   5.2  Structure of Minimal Markov Basis and Indispensable
        Moves .................................................. 66
   5.3  Minimum Fiber Markov Basis ............................. 71
   5.4  Examples of Minimal Markov Bases ....................... 72
        5.4.1  One-Way Contingency Tables ...................... 72
        5.4.2  Independence Model of Two-Way Contingency
               Tables .......................................... 73
        5.4.3  The Unique Minimal Markov Basis for the
               Lawrence Lifting ................................ 73
   5.5  Indispensable Monomials ................................ 75
6  Method of Distance Reduction ................................ 79
   6.1  Distance Reducing Markov Bases ......................... 79
   6.2  Examples of Distance-Reducing Proofs ................... 81
        6.2.1  The Complete Independence Model of Three-Way
               Contingency Tables .............................. 81
        6.2.2  Hardy-Weinberg Model ............................ 83
   6.3  Graver Basis and 1-Norm Reducing Markov Bases .......... 85
   6.4  Some Results on Minimality of 1-Norm Reducing
        Markov Bases ........................................... 86
7  Symmetry of Markov Bases .................................... 91
   7.1  Motivations for Invariance of Markov Bases ............. 91
   7.2  Examples of Invariant Markov Bases ..................... 92
   7.3  Action of Symmetric Group on the Set of Cells .......... 93
   7.4  Symmetry of a Toric Model and the Largest Group
        of Invariance .......................................... 96
   7.5  The Largest Group of Invariance for the Independence
        Model of Two-Way Tables ................................ 98
   7.6  Characterizations of a Minimal Invariant Markov
        Basis ................................................. 100

Part III  Markov Bases for Specific Models

8  Decomposable Models of Contingency Tables .................. 109
   8.1  Chordal Graphs and Decomposable Models ................ 109
   8.2  Markov Bases for Decomposable Models .................. 111
   8.3  Structure of Degree 2 Fibers .......................... 113
   8.4  Minimal Markov Bases for Decomposable Models .......... 115
   8.5  Minimal Invariant Markov Bases ........................ 119
   8.6  The Relation Between Minimal and Minimal Invariant
        Markov Bases .......................................... 127
9  Markov Basis for No-Three-Factor Interaction Models
   and Some Other Hierarchical Models ......................... 129
   9.1  No-Three-Factor Interaction Models for 3 × 3 × К
        Contingency Tables .................................... 129
   9.2  Unique Minimal Markov Basis for 3 × 3 × 3 Tables ...... 130
   9.3  Unique Minimal Markov Basis for 3 × 3 × 4 Tables ...... 139
   9.4  Unique Minimal Markov Basis for 3 × 3 × 5 and 
        3 × 3 × К Tables for K > 5 ............................ 142
   9.5  Indispensable Moves for Larger Tables ................. 145
   9.6  Reducible Models ...................................... 149
   9.7  Markov Basis for Reducible Models ..................... 150
   9.8  Markov Complexity and Graver Complexity ............... 153
   9.9  Markov Width for Some Hierarchical Models ............. 156
10 Two-Way Tables with Structural Zeros and Fixed Subtable
   Sums ....................................................... 159
   10.1 Markov Bases for Two-Way Tables with Structural
        Zeros ................................................. 159
        10.1.1 Quasi-Independence Model in Two-Way
               Incomplete Contingency Tables .................. 159
        10.1.2 Unique Minimal Markov Basis for Two-Way
               Quasi-Independence Model ....................... 161
        10.1.3 Enumerating Elements of the Minimal Markov
               Basis .......................................... 164
        10.1.4 Numerical Example of a Quasi-Independence
               Model .......................................... 167
   10.2 Markov Bases for Subtable Sum Problem ................. 168
        10.2.1 Introduction of Subtable Sum Problem ........... 168
        10.2.2 Markov Bases Consisting of Basic Moves ......... 169
        10.2.3 Markov Bases for Common Diagonal Effect
               Models ......................................... 172
        10.2.4 Numerical Examples of Common Diagonal
               Effect Models .................................. 176
11 Regular Factorial Designs with Discrete Response
   Variables .................................................. 181
   11.1 Conditional Tests for Designed Experiments with
        Discrete Observations ................................. 181
        11.1.1 Conditional Tests for Log-Linear Models of
               Poisson Observations ........................... 181
        11.1.2 Models and Aliasing Relations .................. 184
        11.1.3 Conditional Tests for Logistic Models of
               Binomial Observations .......................... 191
        11.1.4 Example: Wave-Soldering Data ................... 193
   11.2 Markov Bases and Corresponding Models for
        Contingency Tables .................................... 194
        11.2.1 Rewriting Observations as Frequencies of a
               Contingency Table .............................. 194
        11.2.2 Models for the Two-Level Regular Fractional
               Factorial Designs with 16 Runs ................. 200
        11.2.3 Three-Level Regular Fractional Factorial
               Designs and 3s-k Continent Tables .............. 203
12 Groupwise Selection Models ................................. 209
   12.1 Examples of Groupwise Selections ...................... 209
        12.1.1 The Case of National Center Test in Japan ...... 209
        12.1.2 The Case of Hardy-Weinberg Models for Allele
               Frequency Data ................................. 212
   12.2 Conditional Tests for Groupwise Selection Models ...... 213
        12.2.1 Models for NCT Data ............................ 214
        12.2.2 Models for Allele Frequency Data ............... 215
   12.3 Grobner Basis for Segre-Veronese Configuration ........ 217
   12.4 Sampling from the Grobner Basis for the Segre-
        Veronese Configuration ................................ 219
   12.5 Numerical Examples .................................... 219
        12.5.1 The Analysis of NCT Data ....................... 219
        12.5.2 The Analysis of Allele Frequency Data .......... 221
13 The Set of Moves Connecting Specific Fibers ................ 229
   13.1 Discrete Logistic Regression Model with One
        Covariate ............................................. 229
   13.2 Discrete Logistic Regression Model with More than
        One Covariate ......................................... 231
   13.3 Numerical Examples .................................... 238
        13.3.1 Exact Tests of Logistic Regression Model ....... 238
   13.4 Connecting Zero-One Tables with Graver Basis .......... 240
   13.5 Rasch Model ........................................... 241
   13.6 Many-Facet Rasch Model ................................ 242
   13.7 Latin Squares and Zero-One Tables for No-Three-
        Factor Interaction Models ............................. 245

Part IV Some Other Topics of Algebraic Statistics

14 Disclosure Limitation Problem and Markov Basis ............. 251
   14.1 Swapping with Some Marginals Fixed .................... 251
   14.2 E-Swapping ............................................ 252
   14.3 Equivalence of Degree-Two Square-Free Move of Markov
        Bases and Swapping of Two Records ..................... 253
   14.4 Swappability Between Two Records ...................... 254
   14.5 Searching for Another Record for Swapping ............. 257
15 Grobner Basis Techniques for Design of Experiments ......... 261
   15.1 Design Ideals ......................................... 261
   15.2 Identifiability of Polynomial Models and the
        Quotient with Respect to the Design Ideal ............. 262
   15.3 Regular Two-Level Designs ............................. 267
   15.4 Indicator Functions ................................... 269
16 Running Markov Chain Without Markov Bases .................. 275
   16.1 Performing Conditional Tests When a Markov Basis
        Is Not Available ...................................... 275
   16.2 Sampling Contingency Tables with a Lattice Basis ...... 275
   16.3 A Lattice Basis for Higher Lawrence Configuration ..... 277
   16.4 Numerical Experiments ................................. 278
        16.4.1 No-Three-Factor Interaction Model .............. 278
        16.4.2 Discrete Logistic Regression Model ............. 282

References .................................................... 287

Index ......................................................... 295


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:52 2019. Размер: 15,337 bytes.
Посещение N 1574 c 19.11.2013