Nikravesh S.K.Y. Nonlinear systems stability analysis: Lyapunov-based approach (Boca Raton, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNikravesh S.K.Y. Nonlinear systems stability analysis: Lyapunov-based approach / S.K.Y.Nikravesh. - Boca Raton: CRC Press, 2013. - xi, 307 p.: ill. - Ref.: p.239-244. - Ind.: p.299-307. - ISBN-13 978-1-4665-6928-7
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ......................................................... i
Acknowledgments ................................................ xi

Chapter 1  Basic Concepts ....................................... 1
1.1  Mathematical Model for Nonlinear Systems ................... 1
     1.1.1  Existence and Uniqueness of Solutions ............... 4
1.2  Qualitative Behavior of Second-Order Linear Time-
     Invariant Systems .......................................... 5

Chapter 2  Stability Analysis of Autonomous Systems ............ 11
2.1  System Preliminaries ...................................... 11
2.2  Lyapunov's Second Method for Autonomous Systems ........... 12
     2.2.1  Lyapunov Function Generation for Linear Systems .... 15
2.3  Lyapunov Function Generation for Nonlinear Autonomous
     Systems ................................................... 16
     2.3.1  Aizerman's Method .................................. 19
     2.3.2  Lure's Method ...................................... 21
     2.3.3  Krasovskii's Method ................................ 25
     2.3.4  Szego's Method ..................................... 27
     2.3.5  Ingwerson's Method ................................. 34
     2.3.6  Variable Gradient Method of Schultz and Gibson ..... 39
     2.3.7  Reiss-Geiss's Method ............................... 45
     2.3.8  Infante-Clark's Method ............................. 46
     2.3.9  Energy Metric of Wall and Мое ...................... 51
     2.3.10 Zubov's Method ..................................... 53
     2.3.11 Leighton's Method .................................. 56
2.4  Relaxed Lyapunov Stability Conditions ..................... 58
     2.4.1  LaSalle Invariance Principle ....................... 59
     2.4.2  Average Decrement of the V(x) Function ............. 61
     2.4.3  Vector Lyapunov Function ........................... 62
     2.4.4  Higher-Order Derivatives of a Lyapunov Function
            Candidate .......................................... 67
     2.4.5  Stability Analysis of Nonlinear Homogeneous
            Systems ............................................ 82
            2.4.5.1  Homogeneity ............................... 82
            2.4.5.2  Application of Higher-Order Derivatives
                     of Lyapunov Functions ..................... 84
            2.4.5.3  Polynomial Δ-Homogeneous Systems of
                     Order k = 0 ............................... 88
            2.4.5.4  The Δ-Homogeneous Polar Coordinate ........ 91
            2.4.5.5  Numerical Examples ........................ 93
2.5  New Stability Theorems .................................... 96
     2.5.1  Fathabadi-Nikravesh's Method ....................... 96
            2.5.1.1  Low-Order Systems ......................... 96
            2.5.1.2  Linear Systems ........................... 101
            2.5.1.3  Higher-Order Systems ..................... 102
     2.6  Lyapunov Stability Analysis of a Transformed
          Nonlinear System .................................... 106
     Endnotes ................................................. 116

Chapter 3  Stability Analysis of Nonautonomous Systems ........ 119
3.1  Preliminaries ............................................ 119
3.2  Relaxed Lyapunov Stability Conditions .................... 122
     3.2.1  Average Decrement of Function ..................... 122
     3.2.2  Vector Lyapunov Function .......................... 124
     3.2.3  Higher-Order Derivatives of a Lyapunov Function
            Candidate ......................................... 126
3.3  New Stability Theorems (Fathabadi-Nikravesh Time-
     Varying Method) .......................................... 138
3.4  Application of Partial Stability Theory in Nonlinear
     Nonautonomous System Stability Analysis .................. 143
     3.4.1  Unified Stability Theory for Nonlinear Time-
     Varying Systems .......................................... 149

Chapter 4  Stability Analysis of Time-Delayed Systems ......... 155
4.1  Preliminaries ............................................ 155
4.2  Stability Analysis of Linear Time-Delayed Systems ........ 159
     4.2.1  Stability Analysis of Linear Time-Varying Time-
            Delayed Systems ................................... 160
4.3  Delay-Dependent Stability Analysis of Nonlinear Time-
     Delayed Systems .......................................... 166
     4.3.1  Vali-Nikravesh Method of Generating the
            Lyapunov-Krasovskii Functional for Delay-
            Dependent System Stability Analysis ............... 167

Chapter 5  An Introduction to Stability Analysis of
Linguistic Fuzzy Dynamic Systems .............................. 187
5.1  TSK Fuzzy Model System's Stability Analysis .............. 187
5.2  Linguistic Fuzzy Stability Analysis Using a Fuzzy Petri
     Net ...................................................... 190
     5.2.1  Review of a Petri Net and Fuzzy Petri Net ......... 190
     5.2.2  Appropriate Models for Linguistic Stability
            Analysis .......................................... 192
            5.2.2.1  The Infinite Place Model ................. 192
            5.2.2.2  The BIBO Stability in the Infinite
                     Place Model .............................. 193
            5.2.2.3  The Variation Model ...................... 193
     5.2.3  The Necessary and Sufficient Condition for
            Stability Analysis of a First-Order Linear
            System Using Variation Models ..................... 194
     5.2.4  Stability Criterion ............................... 196
5.3  Linguistic Model Stability Analysis ...................... 199
     5.3.1  Definitions in Linguistic Calculus ................ 199
     5.3.2  A Necessary and Sufficient Condition for
            Stability Analysis of a Class of Applied
            Mechanical Systems ................................ 201
     5.3.3  A Necessary and Sufficient Condition for
            Stability Analysis of a Class of Linguistic
            Fuzzy Models ...................................... 204
5.4  Stability Analysis of Fuzzy Relational Dynamic Systems ... 208
     5.4.1  Model Representation and Configuration ............ 209
     5.4.2  Stability in an FRDS: An Analytical Glance ........ 211
5.5  Asymptotic Stability in a Sum-Prod FRDS .................. 216
5.6  Asymptotic Convergence to the Equilibrium State .......... 231
     References ............................................... 239
Appendix A1 ................................................... 245
Appendix A2 ................................................... 257
Appendix A3 ................................................... 265
Appendix A4 ................................................... 269
Appendix A5 ................................................... 287
Index ......................................................... 299


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:46 2019. Размер: 10,688 bytes.
Посещение N 1414 c 05.11.2013