Faltinsen O.M. Sloshing (New York, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаFaltinsen O.M. Sloshing / O.M.Faltinsen, A.N.Timokha. - New York: Cambridge University Press, 2009. - xxvii, 577 p.: ill. - Bibliogr.: p.555-569. - Ind.: p.571-577. - ISBN 978-0-521-88111-1
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
Nomenclature ................................................. xvii
Preface and Acknowledgment .................................... xxv
Acronyms and Abbreviations .................................. xxvii
1  SLOSHING IN MARINE- AND LAND-BASED APPLICATIONS .............. 1
   1.1  Introduction ............................................ 1
   1.2  Resonant free-surface motions ........................... 1
   1.3  Ship tanks .............................................. 5
        1.3.1 Oil tankers ...................................... 10
        1.3.2 FPSO ships and shuttle tankers ................... 12
        1.3.3  Bulk carriers ................................... 12
        1.3.4  Liquefied gas carriers .......................... 14
        1.3.5  LPG carriers .................................... 15
        1.3.6  LNG carriers .................................... 16
        1.3.7  Chemical tankers ................................ 21
        1.3.8  Fish transportation ............................. 21
        1.3.9  Cruise vessels .................................. 21
        1.3.10 Antirolling tanks ............................... 22
   1.4  Tuned liquid dampers ................................... 22
   1.5  Offshore platforms ..................................... 24
   1.6  Completely filled fabric structure ..................... 27
   1.7  External sloshing for ships and marine structures ...... 27
   1.8  Sloshing in coastal engineering ........................ 30
   1.9  Land transportation .................................... 31
   1.10 Onshore tanks .......................................... 31
   1.11 Space applications ..................................... 32
   1.12 Summary of chapters .................................... 33
2  GOVERNING EQUATIONS OF LIQUID SLOSHING ...................... 35
   2.1  Introduction ........................................... 35
   2.2  Navier-Stokes equations ................................ 35
        2.2.1  Two-dimensional Navier-Stokes formulation for
               incompressible liquid ........................... 35
               2.2.1.1  Continuity equation .................... 36
               2.2.1.2  Viscous stresses and derivation of
                        the Navier-Stokes equations ............ 36
        2.2.2  Three-dimensional Navier-Stokes equations ....... 37
               2.2.2.1  Vorticity and potential flow ........... 38
               2.2.2.2  Compressibility ........................ 39
        2.2.3  Turbulent flow .................................. 40
        2.2.4  Global conservation laws ........................ 40
               2.2.4.1  Conservation of fluid momentum ......... 40
               2.2.4.2  Conservation of kinetic and potential
                        fluid energy ........................... 41
               2.2.4.3  Examples: two special cases ............ 42
   2.3  Tank-fixed coordinate system ........................... 43
   2.4  Governing equations in a noninertial, tank-fixed
        coordinate system ...................................... 45
        2.4.1  Navier-Stokes equations ......................... 45
               2.4.1.1  Illustrative example: application to
                        the Earth as an accelerated
                        coordinate system ...................... 46
        2.4.2  Potential flow formulation ...................... 47
               2.4.2.1  Governing equations .................... 47
               2.4.2.2  Body boundary conditions ............... 48
               2.4.2.3  Free-surface conditions ................ 48
               2.4.2.4  Mass (volume) conservation condition ... 49
               2.4.2.5  Free boundary problem of sloshing and
                        initial/periodicity conditions ......... 49
   2.5  Lagrange variational formalism for the sloshing
        problem ................................................ 51
        2.5.1  Eulerian calculus of variations ................. 51
        2.5.2  Illustrative examples ........................... 53
               2.5.2.1  Spring-mass systems .................... 53
               2.5.2.2  Euler-Bernoulli beam equation .......... 54
               2.5.2.3  Linear sloshing in an upright
                        nonmoving tank ......................... 56
        2.5.3  Lagrange and Bateman-Luke variational
               formulations for nonlinear sloshing ............. 57
               2.5.3.1  The Lagrange variational formulation ... 57
               2.5.3.2  The Bateman-Luke principle ............. 58
        2.6  Summary ........................................... 59
        2.7  Exercises ......................................... 59
               2.7.1  Flow parameters .......................... 59
               2.7.2  Surface tension .......................... 60
               2.7.3  Kinematic boundary condition ............. 60
               2.7.4  Added mass force for a nonlifting body
                      in infinite fluid ........................ 60
               2.7.5  Euler-Lagrange equations for finite-
                     dimensional mechanical systems ............ 61
3  WAVE-INDUCED SHIP MOTIONS ................................... 63
   3.1  Introduction ........................................... 63
   3.2  Long-crested propagating waves ......................... 63
   3.3  Statistical description of waves in a sea state ........ 67
   3.4  Long-term predictions of sea states .................... 70
   3.5  Linear wave-induced motions in regular waves ........... 73
        3.5.1  Definitions ..................................... 73
        3.5.2  Equations of motion in the frequency domain ..... 76
   3.6  Coupled sloshing and ship motions ...................... 80
        3.6.1  Quasi-steady free-surface effects of a tank ..... 80
        3.6.2  Antirolling tanks ............................... 82
        3.6.3  Free-surface antirolling tanks .................. 83
        3.6.4  U-tube roll stabilizer .......................... 85
               3.6.4.1  Nonlinear liquid motion ................ 88
               3.6.4.2  Linear forces and moments due to
                        liquid motion in the U-tube ............ 90
               3.6.4.3  Lloyd's U-tube model ................... 90
               3.6.4.4  Controlled U-tank stabilizer ........... 94
        3.6.5  Coupled sway motions and sloshing ............... 97
        3.6.6  Coupled three-dimensional ship motions and
               sloshing in beam waves .......................... 99
   3.7  Sloshing in external flow ............................. 103
        3.7.1  Piston-mode resonance in a two-dimensional
               moonpool ....................................... 103
        3.7.2  Piston and sloshing modes in three-dimensional
               moonpools ...................................... 108
        3.7.3  Resonant wave motion between two hulls ......... 110
   3.8  Time-domain response .................................. 111
   3.9  Response in irregular waves ........................... 114
        3.9.1  Linear short-term sea state response ........... 114
        3.9.2  Linear long-term predictions ................... 115
   3.10 Summary ............................................... 115
   3.11 Exercises ............................................. 117
        3.11.1 Wave energy .................................... 117
        3.11.2 Surface tension ................................ 117
        3.11.3 Added mass and damping ......................... 118
        3.11.4 Heave damping at small frequencies in finite
               water depth .................................... 118
        3.11.5 Coupled roll and sloshing in an antirolling
               tank of a barge in beam sea .................... 119
        3.11.6 Operational analysis of patrol boat with
               U-tube tank .................................... 120
        3.11.7 Moonpool and gap resonances .................... 121
4  LINEAR NATURAL SLOSHING MODES .............................. 122
   4.1  Introduction .......................................... 122
   4.2  Natural frequencies and modes ......................... 123
   4.3  Exact natural frequencies and modes ................... 125
        4.3.1  Two-dimensional case ........................... 125
               4.3.1.1  Rectangular planar tank ............... 125
               4.3.1.2  Wedge cross-section with 45° and 60°
                        semi-apex angles ...................... 128
               4.3.1.3  Troesch's analytical solutions ........ 130
        4.3.2  Three-dimensional cases ........................ 130
               4.3.2.1  Rectangular tank ...................... 130
               4.3.2.2  Upright circular cylindrical tank ..... 133
   4.4  Seiching .............................................. 135
        4.4.1  Parabolic basin ................................ 136
        4.4.2  Triangular basin ............................... 136
        4.4.3  Harbors ........................................ 137
        4.4.4  Pumping-mode resonance of a harbor ............. 137
        4.4.5  Ocean basins ................................... 138
   4.5  Domain decomposition .................................. 138
        4.5.1  Two-dimensional sloshing with a shallow-water
               part ........................................... 138
        4.5.2  Example: swimming pools ........................ 140
   4.6  Variational statement and comparison theorems ......... 140
        4.6.1  Variational formulations ....................... 142
               4.6.1.1  Rayleigh's method ..................... 142
               4.6.1.2  Rayleigh quotient for natural
                        sloshing .............................. 144
               4.6.1.3  Variational equation .................. 147
        4.6.2  Natural frequencies versus tank shape:
               comparison theorems ............................ 150
        4.6.3  Asymptotic formulas for the natural
               frequencies and the variational statement ...... 151
               4.6.3.1  Small liquid-domain reductions of
                        rectangular tanks ..................... 151
               4.6.3.2  Asymptotic formula for a chamfered
                        tank bottom: examples ................. 152
               4.6.3.3  Discussion on the analytical
                        continuation and the applicability
                        of formula (4.90) ..................... 155
   4.7  Asymptotic natural frequencies for tanks with small
        internal structures ................................... 157
        4.7.1  Main theoretical background .................... 158
        4.7.2  Baffles ........................................ 161
               4.7.2.1  Small-size (horizontal or vertical)
                        thin baffle ........................... 161
               4.7.2.2  Hydrodynamic interaction between
                        baffles (plates) and free-surface
                        effects ............................... 164
        4.7.3  Poles .......................................... 168
               4.7.3.1  Horizontal and vertical poles ......... 168
               4.7.3.2  Proximity of circular poles ........... 170
   4.8  Approximate solutions ................................. 171
        4.8.1  Two-dimensional circular tanks ................. 171
        4.8.2  Axisymmetric tanks ............................. 172
               4.8.2.1  Spherical tank ........................ 173
               4.8.2.2  Ellipsoidal (oblate spheroidal)
                        container ............................. 175
        4.8.3  Horizontal cylindrical container ............... 176
               4.8.3.1  Shallow-liquid approximation for
                        arbitrary cross-section ............... 176
               4.8.3.2  Shallow-liquid approximation for
                        circular cross-section ................ 177
   4.9  Two-layer liquid ...................................... 179
        4.9.1  General statement .............................. 179
        4.9.2  Two-phase shallow-liquid approximation ......... 182
               4.9.2.1 Example: oil-gas separator ............. 183
   4.10 Summary ............................................... 185
   4.11 Exercises ............................................. 186
        4.11.1 Irregular frequencies .......................... 186
        4.11.2 Shallow-liquid approximation for trapezoidal-
               base tank ...................................... 186
        4.11.3 Annular and sectored upright circular tank ..... 187
        4.11.4 Circular swimming pool ......................... 187
        4.11.5 Effect of pipes on sloshing frequencies for
               a gravity-based platform ....................... 189
        4.11.6 Effect of horizontal isolated baffles in
               a rectangular tank ............................. 191
        4.11.7 Isolated vertical baffles in a rectangular
               tank ........................................... 192
5  LINEAR MODAL THEORY ........................................ 193
   5.1  Introduction .......................................... 193
   5.2  Illustrative example: surge excitations of a
        rectangular tank ...................................... 193
   5.3  Theory ................................................ 196
        5.3.1  Linear modal equations ......................... 196
               5.3.1.1  Six generalized coordinates for
                        solid-body, linear dynamics ........... 196
               5.3.1.2  Generalized coordinates for liquid
                        sloshing and derivation of linear
                        modal equations ....................... 197
               5.3.1.3  Linear modal equations for
                        prescribed tank motions ............... 199
        5.3.2  Resulting hydrodynamic force and moment in
               linear approximation ........................... 200
               5.3.2.1  Force ................................. 200
               5.3.2.2  Moment ................................ 202
        5.3.3  Steady-state and transient motions: initial
               and periodicity conditions ..................... 204
   5.4  Implementation of linear modal theory ................. 208
        5.4.1  Time- and frequency-domain solutions ........... 208
               5.4.1.1  Time-domain solution with prescribed
                        tank motion ........................... 208
               5.4.1.2  Time-domain solution of coupled
                        sloshing and body motion .............. 208
               5.4.1.3  Frequency-domain solution of coupled
                        sloshing and body motion .............. 208
        5.4.2  Forced sloshing in a two-dimensional
               rectangular tank ............................... 211
               5.4.2.1  Hydrodynamic coefficients ............. 211
               5.4.2.2  Completely filled two-dimensional
                        rectangular tank ...................... 213
               5.4.2.3  Transient sloshing during collision
                        of two ships .......................... 219
               5.4.2.4  Effect of elastic tank wall
                        deflections on sloshing ............... 224
        5.4.3  Forced sloshing in a three-dimensional
               rectangular-base tank .......................... 226
               5.4.3.1  Hydrodynamic coefficients ............. 226
               5.4.3.2  Added mass coefficients in ship
                        applications .......................... 229
               5.4.3.3  Tank added mass coefficients in
                        a ship motion analysis ................ 233
        5.4.4  Hydrodynamic coefficients for an upright
               circular cylindrical tank ...................... 235
        5.4.5  Coupling between sloshing and wave-induced
               vibrations of a monotower ...................... 237
               5.4.5.1 Theory ................................. 237
               5.4.5.2  Undamped eigenfrequencies of the
                        coupled motions ....................... 240
               5.4.5.3  Variational method .................... 240
               5.4.5.4  Wave excitation ....................... 242
               5.4.5.5  Damping ............................... 244
        5.4.6  Rollover of a tank vehicle ..................... 245
        5.4.7  Spherical tanks ................................ 247
               5.4.7.1  Hydroelastic vibrations of
                        a spherical tank ...................... 247
               5.4.7.2  Simplified two-mode modal system for
                        sloshing in a spherical tank .......... 249
        5.4.8  Transient analysis of tanks with asymptotic
               estimates of natural frequencies ............... 250
   5.5  Summary ............................................... 251
   5.6  Exercises ............................................. 251
        5.6.1  Moments by direct pressure integration and
               the Lukovsky formula ........................... 251
        5.6.2  Transient sloshing with damping ................ 251
        5.6.3  Effect of small structural deflections of the
               tank bottom on sloshing ........................ 252
        5.6.4  Effect of elastic deformations of vertical
               circular tank .................................. 252
        5.6.5  Spilling of coffee ............................. 253
        5.6.6  Braking of a tank vehicle ...................... 253
        5.6.7  Free decay of a ship cross-section in roll ..... 253
6  VISCOUS WAVE LOADS AND DAMPING ............................. 254
   6.1  Introduction .......................................... 254
   6.2  Boundary-layer flow ................................... 254
        6.2.1  Oscillatory nonseparated laminar flow .......... 255
        6.2.2  Oscillatory nonseparated laminar flow past
               a circular cylinder ............................ 257
        6.2.3  Turbulent nonseparated boundary-layer flow ..... 258
               6.2.3.1  Turbulent energy dissipation .......... 260
               6.2.3.2  Oscillatory nonseparated flow past
                        a circular cylinder ................... 261
   6.3  Damping of sloshing in a rectangular tank ............. 262
        6.3.1  Damping due to boundary-layer flow
               (Keulegan's theory) ............................ 262
        6.3.2  Incorporation of boundary-layer damping in
               a potential flow model ......................... 264
        6.3.3  Bulk damping ................................... 265
   6.4  Morison's equation .................................... 266
        6.4.1  Morison's equation in a tank-fixed coordinate
               system ......................................... 267
        6.4.2  Generalizations of Morison's equation .......... 269
        6.4.3  Mass and drag coefficients (СM and CD) ......... 270
   6.5  Viscous damping due to baffles ........................ 274
        6.5.1  Baffle mounted vertically on the tank bottom ... 275
        6.5.2  Baffles mounted horizontally on a tank wall .... 278
   6.6  Forced resonant sloshing in a two-dimensional
        rectangular tank ...................................... 280
   6.7  Tuned liquid damper (TLD) ............................. 280
        6.7.1  TLD with vertical poles ........................ 282
        6.7.2  TLD with vertical plate ........................ 283
        6.7.3  TLD with wire-mesh screen ...................... 283
        6.7.4  Scaling of model tests of a TLD ................ 286
        6.7.5  Forced longitudinal oscillations of a TLD ...... 286
   6.8  Effect of swash bulkheads and screens with high
        solidity ratio ........................................ 289
   6.9  Vortex-induced vibration (VIV) ........................ 294
   6.10 Summary ............................................... 296
   6.11 Exercises ............................................. 297
        6.11.1 Damping ratios in a rectangular tank ........... 297
        6.11.2 Morison's equation ............................. 297
        6.11.3 Scaling of TLD with vertical poles ............. 298
        6.11.4 Effect of unsteady laminar boundary-layer
               flow on potential flow ......................... 298
        6.11.5 Reduction of natural sloshing frequency due
               to wire-mesh screen ............................ 298
7  MULTIMODAL METHOD .......................................... 299
   7.1 Introduction ........................................... 299
   7.2  Nonlinear modal equations for sloshing ................ 300
        7.2.1  Modal representation of the free surface and
               velocity potential ............................. 300
        7.2.2  Modal system based on the Bateman-Luke
               formulation .................................... 301
        7.2.3  Advantages and limitations of the nonlinear
               modal method ................................... 303
   7.3  Modal technique for hydrodynamic forces and moments ... 304
        7.3.1  Hydrodynamic force ............................. 305
               7.3.1.1  General case .......................... 305
               7.3.1.2  Completely filled closed tank ......... 306
        7.3.2  Moment ......................................... 306
               7.3.2.1  Hydrodynamic moment as a function of
                        the angular momentum .................. 306
               7.3.2.2  Potential flow ........................ 307
               7.3.2.3  Completely filled closed tank ......... 307
   7.4  Limitations of the modal theory and Lukovsky's
        formulas due to damping ............................... 307
   7.5  Summary ............................................... 308
   7.6  Exercises ............................................. 309
        7.6.1  Modal equations for the beam problem ........... 309
        7.6.2  Linear modal equations for sloshing ............ 309
8  NONLINEAR ASYMPTOTIC THEORIES AND EXPERIMENTS FOR A
   TWO-DIMENSIONAL RECTANGULAR TANK ........................... 310
   8.1 Introduction ........................................... 310
   8.2  Steady-state resonant solutions and their stability
        for a Duffing-like mechanical system .................. 315
        8.2.1  Nonlinear spring-mass system, resonant
               solution, and its stability .................... 315
               8.2.1.1  Steady-state solution ................. 315
               8.2.1.2  Stability ............................. 317
               8.2.1.3  Damping ............................... 319
        8.2.2  Steady-state resonant sloshing due to
               horizontal excitations ......................... 319
   8.3  Single-dominant asymptotic nonlinear modal theory ..... 323
        8.3.1  Asymptotic modal system ........................ 323
               8.3.1.1  Steady-state resonant waves:
                        frequency-domain solution ............. 325
               8.3.1.2  Time-domain solution and comparisons
                        with experiments ...................... 327
        8.3.2  Nonimpulsive hydrodynamic loads ................ 337
               8.3.2.1  Hydrodynamic pressure ................. 337
               8.3.2.2  Hydrodynamic force .................... 338
               8.3.2.3  Hydrodynamic moment relative to
                        origin О .............................. 339
               8.3.2.4  Nonimpulsive hydrodynamic loads on
                        internal structures ................... 339
        8.3.3  Coupled ship motion and sloshing ............... 340
        8.3.4  Applicability: effect of higher modes and
               secondary resonance ............................ 341
   8.4  Adaptive asymptotic modal system for finite liquid
        depth ................................................. 343
        8.4.1  Infinite-dimensional modal system .............. 343
        8.4.2  Hydrodynamic force and moment .................. 345
        8.4.3  Particular finite-dimensional modal systems .... 345
   8.5  Critical depth ........................................ 347
   8.6  Asymptotic modal theory of Boussinesq-type for
        lower-intermediate and shallow-liquid depths .......... 352
        8.6.1  Intermodal ordering ............................ 352
        8.6.2  Boussinesq-type multimodal system for
               intermediate and shallow depths ................ 353
        8.6.3  Damping ........................................ 355
   8.7  Intermediate liquid depth ............................. 355
   8.8  Shallow liquid depth .................................. 357
        8.8.1  Use of the Boussinesq-type multimodal method
               for intermediate and shallow depths ............ 357
               8.8.1.1  Transients ............................ 357
               8.8.1.2  Steady-state regimes .................. 358
        8.8.2  Steady-state hydraulic jumps ................... 361
   8.9  Wave loads on interior structures in shallow liquid
        depth ................................................. 371
   8.10 Mathieu instability for vertical tank excitation ...... 373
   8.11 Summary ............................................... 375
        8.11.1 Nonlinear multimodal method .................... 375
        8.11.2 Subharmonics ................................... 377
        8.11.3 Damping ........................................ 377
        8.11.4 Hydraulic jumps ................................ 377
        8.11.5 Hydrodynamic loads on interior structures ...... 377
   8.12 Exercises ............................................. 377
        8.12.1 Moiseev's asymptotic solution for
               a rectangular tank with infinite depth ......... 377
        8.12.2 Mean steady-state hydrodynamic loads ........... 378
        8.12.3 Simulation by multimodal method ................ 378
        8.12.4 Force on a vertical circular cylinder for
               shallow depth .................................. 378
        8.12.5 Mathieu-type instability ....................... 379
9  NONLINEAR ASYMPTOTIC THEORIES AND EXPERIMENTS FOR THREE-
   DIMENSIONAL SLOSHING ....................................... 380
   9.1  Introduction .......................................... 380
        9.1.1  Steady-state resonant wave regimes and
               hydrodynamic instability ....................... 380
               9.1.1.1  Theoretical treatment by the two
                        lowest natural modes .................. 380
        9.1.1.2  Experimental observations and measurements
                 for a nearly square-base tank ................ 381
        9.1.2  Bifurcation and stability ...................... 385
   9.2  Rectangular-base tank with a finite liquid depth ...... 387
        9.2.1  Statement and generalization of adaptive
               modal system (8.95) ............................ 387
        9.2.2  Moiseev-based modal system for a nearly
               square-base tank ............................... 388
        9.2.3  Steady-state resonance solutions for a nearly
               square-base tank ............................... 392
        9.2.4  Classification of steady-state regimes for
               a square-base tank with longitudinal and
               diagonal excitations ........................... 393
               9.2.4.1  Longitudinal excitation ............... 394
               9.2.4.2  Diagonal excitation ................... 400
        9.2.5  Longitudinal excitation of a nearly square-
               base tank ...................................... 401
        9.2.6  Amplification of higher modes and adaptive
               modal modeling for transients and swirling ..... 408
               9.2.6.1  Adaptive modal modeling and its
                        accuracy .............................. 408
               9.2.6.2  Transient amplitudes .................. 409
               9.2.6.3  Response for diagonal excitations ..... 412
               9.2.6.4  Response for longitudinal
                        excitations ........................... 414
   9.3  Vertical circular cylinder ............................ 417
        9.3.1  Experiments .................................... 419
        9.3.2  Modal equations ................................ 422
        9.3.3  Steady-state solutions ......................... 424
   9.4  Spherical tank ........................................ 426
        9.4.1  Wave regimes ................................... 428
        9.4.2  Tower forces ................................... 430
   9.5  Summary ............................................... 432
        9.5.1  Square-base tank ............................... 432
        9.5.2  Nearly square-base tanks ....................... 433
        9.5.3  Circular base .................................. 433
        9.5.4  Spherical tank ................................. 433
   9.6  Exercises ............................................. 434
        9.6.1  Multimodal methods for square- and
               circular-base tanks ............................ 434
        9.6.2  Spherical pendulum, planar, and rotary
               motions ........................................ 434
        9.6.3  Angular Stokes drift for swirling .............. 435
        9.6.4  Three-dimensional shallow-liquid equations in
               a body-fixed accelerated coordinate system ..... 436
        9.6.5  Wave loads on a spherical tank with a tower .... 437
10 COMPUTATIONAL FLUID DYNAMICS ............................... 439
   10.1 Introduction .......................................... 439
   10.2 Boundary element methods .............................. 444
        10.2.1 Free-surface conditions ........................ 445
        10.2.2 Generation of vorticity ........................ 447
        10.2.3 Example: numerical discretization .............. 447
        10.2.4 Linear frequency-domain solutions .............. 449
   10.3 Finite difference method .............................. 450
        10.3.1 Preliminaries .................................. 451
        10.3.2 Governing equations ............................ 451
        10.3.3 Interface capturing ............................ 452
               10.3.3.1 Level-set technique ................... 453
        10.3.4 Introduction to numerical solution procedures .. 454
        10.3.5 Time-stepping procedures ....................... 455
        10.3.6 Spatial discretizations ........................ 456
        10.3.7 Discretization of the convective and viscous
               terms .......................................... 456
        10.3.8 Discretization of the Poisson equation for
               pressure ....................................... 457
        10.3.9 Treatment of immersed boundaries ............... 458
        10.3.10 Constrained interpolation profile method ...... 459
   10.4 Finite volume method .................................. 460
        10.4.1 Introduction ................................... 460
        10.4.2 FVM applied to linear sloshing with potential
               flow ........................................... 462
               10.4.2.1 Example ............................... 464
   10.5 Finite element method ................................. 465
        10.5.1 Introduction ................................... 465
        10.5.2 A model problem  ............................... 465
               10.5.2.1 Numerical example ..................... 466
        10.5.3 One-dimensional acoustic resonance ............. 466
        10.5.4 FEM applied to linear sloshing with potential
               flow ........................................... 468
               10.5.4.1 Matrix system ......................... 470
               10.5.4.2 Example ............................... 472
   10.6 Smoothed particle hydrodynamics method ................ 472
   10.7 Summary ............................................... 477
   10.8 Exercises ............................................. 478
        10.8.1 One-dimensional acoustic resonance ............. 478
        10.8.2 BEM applied to steady flow past a cylinder in
               infinite fluid ................................. 479
        10.8.3 BEM applied to linear sloshing with potential
               flow and viscous damping ....................... 480
        10.8.4 AppUcation of FEM to the Navier-Stokes
               equations ...................................... 480
        10.8.5 SPH method ..................................... 480
11 SLAMMING ................................................... 481
   11.1 Introduction .......................................... 481
   11.2 Scaling laws for model testing ........................ 484
   11.3 Incompressible liquid impact on rigid tank roof
        without gas cavities .................................. 488
        11.3.1 Wagner model ................................... 489
               11.3.1.1 Prediction of wetted surface .......... 491
               11.3.1.2 Spray root solution ................... 492
        11.3.2 Damping of sloshing due to tank roof impact .... 494
        11.3.3 Three-dimensional liquid impact ................ 496
   11.4 Impact of steep waves against a vertical wall ......... 497
        11.4.1 Wagner-type model .............................. 500
        11.4.2 Pressure-impulse theory ........................ 502
   11.5 Tank roof impact at high filling ratios ............... 503
   11.6 Slamming with gas pocket .............................. 506
        11.6.1 Natural frequency for a gas cavity ............. 509
        11.6.1.1 Simplified analysis .......................... 511
        11.6.2 Damping of gas cavity oscillations ............. 511
        11.6.3 Forced oscillations of a gas cavity ............ 513
               11.6.3.1 Prediction of the wetted surface ...... 515
               11.6.3.2 Case study ............................ 515
        11.6.4 Nonlinear gas cavity analysis .................. 516
        11.6.5 Scaling ........................................ 516
   11.7 Cavitation and boiling ................................ 522
   11.8 Acoustic liquid effects ............................... 522
        11.8.1 Two-dimensional liquid entry of body with
               horizontal bottom .............................. 524
        11.8.2 Liquid entry of parabolic contour .............. 526
        11.8.3 Hydraulic jump impact .......................... 526
        11.8.4 Thin-layer approximation of liquid-gas
               mixture ........................................ 527
   11.9 Нуdroelastic slamming ................................. 528
        11.9.1 Experimental study ............................. 532
        11.9.2 Theoretical hydroelastic beam model ............ 533
        11.9.3 Comparisons between theory and experiments ..... 537
        11.9.4 Parameter study for full-scale tank ............ 538
        11.9.5 Model test scaling of hydroelasticity .......... 544
        11.9.6 Slamming in membrane tanks ..................... 545
   11.10 Summary .............................................. 548
   11.11 Exercises ............................................ 550
        11.11.1 Impact force on a wedge ....................... 550
        11.11.2 Prediction of the wetted surface by Wagner's
                method ........................................ 550
        11.11.3 Integrated slamming loads on part of the
                tank roof ..................................... 551
        11.11.4 Impact of a liquid wedge ...................... 551
        11.11.5 Acoustic impact of a hydraulic jump against
                a vertical wall ............................... 551
APPENDIX: Integral Theorems ................................... 553
Bibliography .................................................. 555
Index ......................................................... 571


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:25:40 2019. Размер: 40,597 bytes.
Посещение N 1604 c 29.10.2013