Ward I.M. Mechanical properties of solid polymers (Hoboken, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаWard I.M. Mechanical properties of solid polymers / I.I.Ward, J.Sweeney. - 3th ed. - Hoboken: Wiley, 2012. - xi, 461 p. - Incl. bibl. ref. - Ind.: p.449-461. - ISBN 978-1-444-31950-7
 

Оглавление / Contents
 
Preface ...................................................... xiii
1    Structure of Polymers ...................................... 1
1.1  Chemical Composition ....................................... 1
     1.1.1  Polymerisation ...................................... 1
     1.1.2  Cross-Linking and Chain-Branching ................... 3
     1.1.3  Average Molecular Mass and Molecular Mass
            Distribution ........................................ 4
     1.1.4  Chemical and Steric Isomerism and Stereoregularity .. 5
     1.1.5  Liquid Crystalline Polymers ......................... 7
     1.1.6  Blends, Grafts and Copolymers ....................... 8
1.2  Physical Structure ......................................... 9
     1.2.1  Rotational Isomerism ................................ 9
     1.2.2  Orientation and Crystallinity ...................... 10
     References ................................................ 16
     Further Reading ........................................... 17

2    The Mechanical Properties of Polymers: General
     Considerations ............................................ 19
2.1  Objectives ................................................ 19
2.2  The Different Types of Mechanical Behaviour ............... 19
2.3  The Elastic Solid and the Behaviour of Polymers ........... 21
2.4  Stress and Strain ......................................... 22
     2.4.1  The State of Stress ................................ 22
     2.4.2  The State of Strain ................................ 23
2.5  The Generalised Hooke's Law ............................... 26
     References ................................................ 29

3    The Behaviour in the Rubber-Like State: Finite Strain
     Elasticity ................................................ 31
3.1  The Generalised Definition of Strain ...................... 31
     3.1.1  The Cauchy-Green Strain Measure .................... 32
     3.1.2  Principal Strains .................................. 34
     3.1.3  Transformation of Strain ........................... 36
     3.1.4  Examples of Elementary Strain Fields ............... 38
     3.1.5  Relationship of Engineering Strains to General
            Strains ............................................ 41
     3.1.6  Logarithmic Strain ................................. 42
3.2  The Stress Tensor ......................................... 43
3.3  The Stress-Strain Relationships ........................... 44
3.4  The Use of a Strain Energy Function ....................... 47
     3.4.1  Thermodynamic Considerations ....................... 47
     3.4.2  The Form of the Strain Energy Function ............. 51
     3.4.3  The Strain Invariants .............................. 51
     3.4.4  Application of the Invariant Approach .............. 52
     3.4.5  Application of the Principal Stretch Approach ...... 54
     References ................................................ 58

4    Rubber-Like Elasticity .................................... 61
4.1  General Features of Rubber-Like Behaviour ................. 61
4.2  The Thermodynamics of Deformation ......................... 62
     4.2.1    The Thermoelastic Inversion Effect ............... 64
4.3  The Statistical Theory .................................... 65
     4.3.1  Simplifying Assumptions ............................ 65
     4.3.2  Average Length of a Molecule between Cross-Links ... 66
     4.3.3  The Entropy of a Single Chain ...................... 67
     4.3.4  The Elasticity of a Molecular Network .............. 69
4.4  Modifications of Simple Molecular Theory .................. 72
     4.4.1  The Phantom Network Model .......................... 73
     4.4.2  The Constrained Junction Model ..................... 73
     4.4.3  The Slip Link Model ................................ 73
     4.4.4  The Inverse Langevin Approximation ................. 75
     4.4.5  The Conformational Exhaustion Model ................ 79
     4.4.6  The Effect of Strain-Induced Crystallisation ....... 80
4.5  The Internal Energy Contribution to Rubber Elasticity ..... 80
4.6  Conclusions ............................................... 83
     References ................................................ 83
     Further Reading ........................................... 85

5    Linear Viscoelastic Behaviour ............................. 87
5.1  Viscoelasticity as a Phenomenon ........................... 87
     5.1.1  Linear Viscoelastic Behaviour ...................... 88
     5.1.2  Creep .............................................. 89
     5.1.3  Stress Relaxation .................................. 91
5.2  Mathematical Representation of Linear Viscoelasticity ..... 92
     5.2.1  The Boltzmann Superposition Principle .............. 93
     5.2.2  The Stress Relaxation Modulus ...................... 96
     5.2.3  The Formal Relationship between Creep and Stress
            Relaxation ......................................... 96
     5.2.4  Mechanical Models, Relaxation and Retardation
            Time Spectra ....................................... 97
     5.2.5  The Kelvin or Voigt Model .......................... 98
     5.2.6  The Maxwell Model .................................. 99
     5.2.7  The Standard Linear Solid ......................... 100
     5.2.8  Relaxation Time Spectra and Retardation Time
            Spectra ........................................... 101
5.3  Dynamical Mechanical Measurements: The Complex Modulus
     and Complex Compliance ................................... 103
     5.3.1  Experimental Patterns for G1, G2 and so on as
            a Function of Frequency ........................... 105
5.4  The Relationships between the Complex Moduli and the
     Stress Relaxation Modulus ................................ 109
     5.4.1  Formal Representations of the Stress Relaxation
            Modulus and the Complex Modulus ................... 111
     5.4.2  Formal Representations of the Creep Compliance
            and the Complex Compliance ........................ 113
     5.4.3  The Formal Structure of Linear Viscoelasticity .... 113
5.5  The Relaxation Strength .................................. 114
     References ............................................... 116
     Further Reading .......................................... 117

6    The Measurement of Viscoelastic Behaviour ................ 119
6.1  Creep and Stress Relaxation .............................. 119
     6.1.1  Creep Conditioning ................................ 119
     6.1.2  Specimen Characterisation ......................... 120
     6.1.3  Experimental Precautions .......................... 120
6.2  Dynamic Mechanical Measurements .......................... 123
     6.2.1  The Torsion Pendulum .............................. 124
     6.2.2  Forced Vibration Methods .......................... 126
     6.2.3  Dynamic Mechanical Thermal Analysis (DMTA) ........ 126
6.3  Wave-Propagation Methods ................................. 127
     6.3.1  The Kilohertz Frequency Range ..................... 128
     6.3.2  The Megahertz Frequency Range: Ultrasonic
            Methods ........................................... 129
     6.3.3  The Hypersonic Frequency Range: Brillouin
            Spectroscopy ...................................... 131
     References ............................................... 131
     Further Reading .......................................... 133

7    Experimental Studies of Linear Viscoelastic Behaviour
     as a Function of Frequency and Temperature: Time-
     Temperature Equivalence .................................. 135
7.1  General Introduction ..................................... 135
     7.1.1  Amorphous Polymers ................................ 135
     7.1.2  Temperature Dependence of Viscoelastic Behaviour .. 138
     7.1.3  Crystallinity and Inclusions ...................... 138
7.2  Time-Temperature Equivalence and Superposition ........... 140
7.3  Transition State Theories ................................ 143
     7.3.1  The Site Model Theory ............................. 145
7.4  The Time-Temperature Equivalence of the Glass
     Transition Viscoelastic Behaviour in Amorphous Polymers
     and the Williams, Landel and Ferry (WLF) Equation ........ 147
     7.4.1  The Williams, Landel and Ferry Equation, the
            Free Volume Theory and Other Related Theories ..... 153
     7.4.2  The Free Volume Theory of Cohen and Turnbull ...... 154
     7.4.3  The Statistical Thermodynamic Theory of Adam and
            Gibbs ............................................. 154
     7.4.4  An Objection to Free Volume Theories .............. 155
7.5  Normal Mode Theories Based on Motion of Isolated
     Flexible Chains .......................................... 156
7.6  The Dynamics of Highly Entangled Polymers ................ 160
     References ............................................... 163

8    Anisotropic Mechanical Behaviour ......................... 167
8.1  The Description of Anisotropic Mechanical Behaviour ...... 167
8.2  Mechanical Anisotropy in Polymers ........................ 168
     8.2.1  The Elastic Constants for Specimens Possessing
            Fibre Symmetry .................................... 168
     8.2.2  The Elastic Constants for Specimens Possessing
            Orthorhombic Symmetry ............................. 170
8.3  Measurement of Elastic Constants ......................... 171
     8.3.1  Measurements on Films or Sheets ................... 171
     8.3.2  Measurements on Fibres and Monofilaments .......... 181
8.4  Experimental Studies of Mechanical Anisotropy in
     Oriented Polymers ........................................ 185
     8.4.1  Sheets of Low-Density Polyethylene ................ 186
     8.4.2  Filaments Tested at Room Temperature .............. 186
8.5  Interpretation of Mechanical Anisotropy: General
     Considerations ........................................... 192
     8.5.1  Theoretical Calculation of Elastic Constants ...... 192
     8.5.2  Orientation and Morphology ........................ 197
8.6  Experimental Studies of Anisotropic Mechanical
     Behaviour and Their Interpretation ....................... 198
     8.6.1  The Aggregate Model and Mechanical Anisotropy ..... 198
     8.6.2  Correlation of the Elastic Constants of an
            Oriented Polymer with Those of an Isotropic
            Polymer: The Aggregate Model ...................... 198
     8.6.3  The Development of Mechanical Anisotropy with
            Molecular Orientation ............................. 201
     8.6.4  The Sonic Velocity ................................ 206
     8.6.5  Amorphous Polymers ................................ 208
     8.6.6  Oriented Polyethylene Terephthalate Sheet with
            Orthorhombic Symmetry ............................. 209
8.7  The Aggregate Model for Chain-Extended Polyethylene and
     Liquid Crystalline Polymers .............................. 212
8.8  Auxetic Materials: Negative Poisson's Ratio .............. 216
     References ............................................... 220

9    Polymer Composites: Macroscale and Microscale ............ 227
9.1  Composites: A General Introduction ....................... 227
9.2  Mechanical Anisotropy of Polymer Composites .............. 228
     9.2.1  Mechanical Anisotropy of Lamellar Structures ...... 228
     9.2.2  Elastic Constants of Highly Aligned Fibre
            Composites ........................................ 230
     9.2.3  Mechanical Anisotropy and Strength of Uniaxially
            Aligned Fibre Composites .......................... 233
9.3  Short Fibre Composites ................................... 233
     9.3.1  The Influence of Fibre Length: Shear Lag Theory ... 234
     9.3.2  Debonding and Pull-Out ............................ 236
     9.3.3  Partially Oriented Fibre Composites ............... 236
9.4  Nanocomposites ........................................... 238
9.5  Takayanagi Models for Semi-Crystalline Polymers .......... 241
     9.5.1  The Simple Takayanagi Model ....................... 242
     9.5.2  Takayanagi Models for Dispersed Phases ............ 242
     9.5.3  Modelling Polymers with a Single-Crystal Texture .. 245
9.6  Ultra-High-Modulus Polyethylene .......................... 250
     9.6.1  The Crystalline Fibril Model ...................... 250
     9.6.2  The Crystalline Bridge Model ...................... 252
9.7  Conclusions .............................................. 255
     References ............................................... 256
     Further Reading .......................................... 259

10   Relaxation Transitions: Experimental Behaviour and
     Molecular Interpretation ................................. 261
10.1 Amorphous Polymers: An Introduction ...................... 261
10.2 Factors Affecting the Glass Transition in Amorphous
     Polymers ................................................. 263
     10.2.1 Effect of Chemical Structure ...................... 263
     10.2.2 Effect of Molecular Mass and Cross-Linking ........ 265
     10.2.3 Blends, Grafts and Copolymers ..................... 266
     10.2.4 Effects of Plasticisers ........................... 267
10.3 Relaxation Transitions in Crystalline Polymers ........... 269
     10.3.1 General Introduction .............................. 269
     10.3.2 Relaxation in Low-Crystallinity Polymers .......... 270
     10.3.3 Relaxation Processes in Polyethylene .............. 272
     10.3.4 Relaxation Processes in Liquid Crystalline
            Polymers .......................................... 278
10.4 Conclusions .............................................. 282
     References ............................................... 282

11   Non-linear Viscoelastic Behaviour ........................ 285
11.1 The Engineering Approach ................................. 286
     11.1.1 Isochronous Stress-Strain Curves .................. 286
     11.1.2 Power Laws ........................................ 287
11.2 The Rheological Approach ................................. 289
     11.2.1 Historical Introduction to Non-linear
            Viscoelasticity Theory ............................ 289
     11.2.2 Adaptations of Linear Theory - Differential
            Models ............................................ 294
     11.2.3 Adaptations of Linear Theory - Integral Models .... 299
     11.2.4 More Complicated Single-Integral Representations .. 303
     11.2.5 Comparison of Single-Integral Models .............. 306
11.3 Creep and Stress Relaxation as Thermally Activated
     Processes ................................................ 306
     11.3.1 The Eyring Equation ............................... 307
     11.3.2 Applications of the Eyring Equation to Creep ...... 308
     11.3.3 Applications of the Eyring Equation to Stress
            Relaxation ........................................ 310
     11.3.4 Applications of the Eyring Equation to Yield ...... 312
11.4 Multi-axial Deformation: Three-Dimensional Non-linear
     Viscoelasticity .......................................... 313
     References ............................................... 315
     Further Reading .......................................... 318

12   Yielding and Instability in Polymers ..................... 319
12.1 Discussion of the Load-Elongation Curves in Tensile
     Testing .................................................. 320
     12.1.1 Necking and the Ultimate Stress ................... 321
     12.1.2 Necking and Cold-Drawing: A Phenomenological
            Discussion ........................................ 323
     12.1.3 Use of the Considere Construction ................. 325
     12.1.4 Definition of Yield Stress ........................ 326
12.2 Ideal Plastic Behaviour .................................. 327
     12.2.1 The Yield Criterion: General Considerations ....... 327
     12.2.2 The Tresca Yield Criterion ........................ 327
     12.2.3 The Coulomb Yield Criterion ....................... 328
     12.2.4 The von Mises Yield Criterion ..................... 329
     12.2.5 Geometrical Representations of the Tresca, von
            Mises and Coulomb Yield Criteria .................. 331
     12.2.6 Combined Stress States ............................ 331
     12.2.7 Yield Criteria for Anisotropic Materials .......... 333
     12.2.8 The Plastic Potential ............................. 334
12.3 Historical Development of Understanding of the Yield
     Process .................................................. 335
     12.3.1 Adiabatic Heating ................................. 336
     12.3.2 The Isothermal Yield Process: The Nature of the
            Load Drop ......................................... 337
12.4 Experimental Evidence for Yield Criteria in Polymers ..... 338
     12.4.1 Application of Coulomb Yield Criterion to Yield
            Behaviour ......................................... 339
     12.4.2 Direct Evidence for the Influence of Hydrostatic
            Pressure on Yield Behaviour ....................... 339
12.5 The Molecular Interpretations of Yield ................... 342
     12.5.1 Yield as an Activated Rate Process ................ 343
     12.5.2 Yield Considered to Relate to the Movement of
            Dislocations or Disclinations ..................... 351
12.6 Cold-Drawing, Strain Hardening and the True Stress-
     Strain Curve ............................................. 359
     12.6.1 General Considerations ............................ 359
     12.6.2 Cold-Drawing and the Natural Draw Ratio ........... 359
     12.6.3 The Concept of the True Stress-True Strain Curve
            and the Network Draw Ratio ........................ 361
     12.6.4 Strain Hardening and Strain Rate Sensitivity ...... 363
     12.6.5 Process Flow Stress Paths ......................... 364
     12.6.6 Neck Profiles ..................................... 365
     12.6.7 Crystalline Polymers .............................. 366
12.7 Shear Bands .............................................. 366
12.8 Physical Considerations behind Viscoplastic Modelling .... 369
     12.8.1  The Bauschinger Effect ........................... 370
12.9 Shape Memory Polymers .................................... 371
     References ............................................... 372
     Further Reading .......................................... 378

13   Breaking Phenomena ....................................... 379
13.1 Definition of Tough and Brittle Behaviour in Polymers .... 379
13.2 Principles of Brittle Fracture of Polymers ............... 380
     13.2.1 Griffith Fracture Theory .......................... 380
     13.2.2 The Irwin Model ................................... 381
     13.2.3 The Strain Energy Release Rate .................... 382
13.3 Controlled Fracture in Brittle Polymers .................. 385
13.4 Crazing in Glassy Polymers ............................... 386
13.5 The Structure and Formation of Crazes .................... 391
     13.5.1 The Structure of Crazes ........................... 392
     13.5.2 Craze Initiation and Growth ....................... 395
     13.5.3 Crazing in the Presence of Fluids and Gases:
            Environmental Crazing ............................. 397
13.6 Controlled Fracture in Tough Polymers .................... 400
     13.6.1 The/-Integral ..................................... 401
     13.6.2 Essential Work of Fracture ........................ 404
     13.6.3 Crack Opening Displacement ........................ 407
13.7 The Molecular Approach ................................... 413
13.8 Factors Influencing Brittle-Ductile Behaviour: Brittle-
     Ductile Transitions ...................................... 414
     13.8.1 The Ludwig-Davidenkov-Orowan Hypothesis ........... 414
     13.8.2 Notch Sensitivity and Vincent's стд-ау Diagram .... 416
     13.8.3 A Theory of Brittle-Ductile Transitions
            Consistent with   Fracture Mechanics: Fracture
            Transitions ....................................... 419
13.9 The Impact Strength of Polymers .......................... 422
     13.9.1 Flexed-Beam Impact ................................ 422
     13.9.2 Falling-Weight Impact ............................. 426
     13.9.3 Toughened Polymers: High-Impact Polyblends ........ 427
     13.9.4 Crazing and Stress Whitening ...................... 429
     13.9.5 Dilatation Bands .................................. 429
13.10 The Tensile Strength and Tearing of Polymers in the
     Rubbery State ............................................ 430
     13.10.1 The Tearing of Rubbers: Extension of Griffith
             Theory ........................................... 430
     13.10.2 Molecular Theories of the Tensile Strength of
             Rubbers .......................................... 431
13.11 Effect of Strain Rate and Temperature ................... 432
13.12 Fatigue in Polymers ..................................... 434
     References ............................................... 439
     Further Reading .......................................... 447

Index ......................................................... 449


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:25:38 2019. Размер: 25,277 bytes.
Посещение N 1481 c 22.10.2013