Biorefineries - industrial processes and products: status quo and future directions; vol. 1 (Weinheim, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBiorefineries - industrial processes and products: status quo and future directions. Vol.1 / ed. by B.Kamm, P.R.Gruber, M.Kamm. - Weinheim: Wiley-VCH., 2009. - xlvi, 406 p.: ill. - Incl. bibl. ref. - ISBN 978-3-527-32953-3
 

Оглавление / Contents
 
Editors's Preface .......................................... ХХХIII
Foreword ..................................................... XXXV
Henning Hopf
Foreword ..................................................... XXXV
Paul T. Anastas
List of Contributors ........................................ XXXIX

Volume  1

Part I Background and Outline - Principles and Fundamentals
1    Biorefinery Systems - An Overview .......................... 3
     Birgit Kamm, Michael Kamm, Patrick R. Cruber, and Stefan
     Kromus
1.1  Introduction ............................................... 3
1.2  Historical Outline ......................................... 4
     1.2.1  Historical Technological Outline and Industrial
            Resources ........................................... 4
     1.2.2  The Beginning - A Digest ............................ 5
            1.2.2.1  Sugar Production ........................... 5
            1.2.2.2  Starch Hydrolysis .......................... 5
            1.2.2.3  Wood Saccharification ...................... 5
            1.2.2.4  Furfural ................................... 6
            1.2.2.5  Cellulose and Pulp ......................... 6
            1.2.2.6  Levulinic Acid ............................. 6
            1.2.2.7  Lipids ..................................... 7
            1.2.2.8  Vanillin from Lignin ....................... 7
            1.2.2.9  Lactic Acid ................................ 7
     1.2.3  The Origins of Integrated Biobased Production ....... 8
1.3  Situation ................................................. 11
     1.3.1  Some Current Aspects' of Biorefinery Research and
            Development ........................................ 11
     1.3.2  Raw Material Biomass ............................... 12
     1.3.3  National Vision and Goals and Plan for Biomass
            Technology in the United States .................... 14
     1.3.4  Vision and Goals and Plan for Biomass Technology
            in the European Union and Germany .................. 15
1.4  Principles of Biorefineries ............................... 16
     1.4.1  Fundamentals ....................................... 16
     1.4.2  Definition of the Term "Biorefinery" ............... 19
     1.4.3  The Role of Biotechnology .......................... 20
            1.4.3.1  Guidelines of Fermentation Section
                     within Glucose-product Family Tree ........ 21
     1.4.4  Building Blocks, Chemicals and Potential
            Screening .......................................... 22
1.5  Biorefinery Systems and Design ............................ 23
     1.5.1  Introduction ....................................... 23
     1.5.2  Lignocellulosic Feedstock Biorefinery .............. 24
     1.5.3  Whole-crop Biorefinery ............................. 26
     1.5.4  Green Biorefinery .................................. 29
     1.5.5  Two-platform Concept and Syngas .................... 31
1.6  Outlook and Perspectives .................................. 32
     References ................................................ 33

2    Biomass Refining Global Impact - The Biobased Economy of
     the 21st Century .......................................... 41
     Bruce E. Dale and Seungdo Kim
2.1  Introduction .............................................. 41
2.2  Historical Outline ........................................ 42
     2.2.1  Background and Development of the Fossil
            Carbon-processing Industries ....................... 42
     2.2.2  The Existing Biobased Economy: Renewable Carbon .... 43
     2.2.3  Toward a Much Larger Biobased Economy .............. 44
2.3  Supplying the Biorefinery ................................. 45
     2.3.1  What Raw Materials do Biorefineries Require and
            What Products Can They Make? ....................... 45
     2.3.2  Comparing Biomass Feedstock Costs With Petroleum
            Costs .............................................. 48
     2.3.3  How Much Biomass Feedstock Can be Provided at
            What Cost? ......................................... 50
2.4  How Will Biorefineries Develop Technologically? ........... 53
     2.4.1  Product Yield: The Dominant Technoeconomic Factor .. 53
     2.4.2  Product Diversification: Using the Whole Barrel
            of Biomass ......................................... 54
     2.4.3  Process Development and a Technical Prerequisite
            for Cellulosic Biorefineries ....................... 55
2.5  Sustainability of Integrated Biorefining Systems .......... 56
     2.5.1  Integrated Biorefining Systems: "All Biomass is
            Local" ............................................. 56
     2.5.2  Agricultural/Forestry Ecosystem Modeling: New
            Tools for an Age of Sustainability ................. 57
     2.5.3  Analyzing the Sustainability of Integrated
            Biorefining Systems: Some Results .................. 60
2.6  Conclusions ............................................... 64
     Acknowledgements .......................................... 65
     References ................................................ 65

3    Development of Biorefineries - Technical and Economic
     Considerations ............................................ 67
     Bill Dean, Tim Dodge, Fernando Valle, and Copal Chotani
3.1  Introduction .............................................. 67
3.2  Overview The Biorefinery Model ............................ 68
3.3  Feedstock and Conversion to Fermentable Sugar ............. 68
     3.3.1  Sucrose ............................................ 70
     3.3.2  Starch ............................................. 70
     3.3.3  Cellulose .......................................... 71
3.4  Technical Challenges ...................................... 74
     3.4.1  Cellulase Enzymes .................................. 74
            3.4.1.1  Improved Cellulase Production Economics ... 74
            3.4.1.2  Improved Cellulase Enzyme Performance ..... 76
     3.4.2  Fermentation Organisms ............................. 77
            3.4.2.1  Biomass Hydrolyzate as Fermentable
                     Carbon Source ............................. 78
            3.4.2.2  Production Process as a Whole ............. 79
            3.4.2.3  Emerging Solutions ........................ 80
3.5  Conclusions ............................................... 81
     Acknowledgments ........................................... 82
   References .................................................. 82

4    Biorefineries for the Chemical Industry -A Dutch Point
     of View ................................................... 85
     Ed de Jong, René van Ree Reo, Robert van Tuil, and
     Wolter Elbersen
4.1  Introduction .............................................. 85
4.2  Historical Outline - The Chemical Industry: Current
     Situation and Perspectives ................................ 86
     4.2.1  Overview of Products and Markets ................... 86
     4.2.2  Technological Pathways ............................. 87
     4.2.3  Biomass-based Industrial Products .................. 87
            4.2.3.1  Carbohydrates ............................. 89
            4.2.3.2  Fatty Acids ............................... 90
            4.2.3.3  Other ..................................... 91
     4.2.4  International Perspectives ......................... 92
            4.2.4.1  Production ................................ 92
            4.2.4.2  Integration ............................... 92
            4.2.4.3  Use and Re-use ............................ 93
4.3  Biomass: Technology and Sustainability .................... 93
     4.3.1  Transition to a Bio-based Industry: Sectoral
            Integration in the Netherlands ..................... 93
     4.3.2  Can Sustainability Drive Technology? ............... 96
4.4  The Chemical Industry. Biomass Opportunities -
     Biorefineries ............................................. 97
     4.4.1  Biomass Opportunities .............................. 97
     4.4.2  Biorefinery Concept ................................ 98
     4.4.3  Biomass Availability .............................. 100
     4.4.4  Primary Refinery .................................. 101
     4.4.5  Secondary Thermochemical Refinery ................. 102
     4.4.6  Secondary Biochemical Refinery - Fermentative
            Processes ......................................... 104
            4.4.6.1  Feedstocks ............................... 105
            4.4.6.2  Product Spectrum ......................... 105
            4.4.6.3  Side Streams and Recycling ............... 106
4.5  Conclusions, Outlook, and Perspectives ................... 106
     4.5.1  Biomass - Sustainability .......................... 106
     4.5.2  Biomass Refining and Pretreatment ................. 107
     4.5.3  Conversion Technology ............................. 108
     4.5.4  Chemicals and Materials Design .................... 108
     4.5.5  Dutch Energy Research Strategy ("EOS") ............ 109
     References ............................................... 109

Part II  Biorefinery Systems

Lignocellulose Feedstock Biorefinery
5    The Lignocellulosic Biorefinery - A Strategy for
     Returning to a Sustainable Source of Fuels and
     Industrial Organic Chemicals ............................. 115
     L. Davis Clements and Donald L. Van Dyne
5.1  The Situation ............................................ 115
5.2  The Strategy ............................................. 115
     5.2.1  A Strategy Within a Strategy ...................... 116
     5.2.2  Environmental Benefits ............................ 117
     5.2.3  The Business Structure ............................ 117
     5.2.4  Cost Estimates .................................... 118
5.3  Comparison of Petroleum and Biomass Chemistry ............ 118
     5.3.1  Petroleum Resources ............................... 118
     5.3.2  Biomass Resources ................................. 119
     5.3.3  Saccharides and Polysaccharides ................... 121
     5.3.4  Lignin ............................................ 121
     5.3.5  Triacylglycerides (or Triglycerides) .............. 121
     5.3.6  Proteins .......................................... 122
5.4  The Chemistry of the Lignocellulosic Biorefinery ......... 122
5.5  Examples of Integrated Biorefinery Applications .......... 125
     5.5.1  Production of Ethanol and Furfural from
            Lignocellulosic Feedstocks ........................ 125
     5.5.2  Management of Municipal Solid Waste ............... 125
     5.5.3  Coupling MSW Management, Ethanol, and Biodiesel ... 126
5.6  Summary .................................................. 127
     References ............................................... 127

6    Lignocellulosic Feedstock Biorefinery: History and Plant
     Development for Biomass Hydrolysis ....................... 129
     Raphael Katzen and Daniel J. Schell
6.1  Introduction ............................................. 129
6.2  Hydrolysis of Biomass Materials .......................... 129
     6.2.1  Acid Conversion ................................... 129
     6.2.2  Enzymatic Conversion .............................. 130
6.3  Acid Hydrolysis Processes ................................ 130
     6.3.1  Early Efforts to Produce Ethanol .................. 130
     6.3.2  Other Products .................................... 133
6.4  Enzymatic Hydrolysis Process ............................. 134
     6.4.1  Early History ..................................... 134
     6.4.2  Enzyme-Based Plant Development .................... 134
     6.4.3  Technology Development ............................ 135
6.5  Conclusion ............................................... 136
     References ............................................... 136

7    The Biotine Process - Production of Levulinic Acid,
     Furfural, and Formic Acid from Lignocellulosic
     Feedstocks ............................................... 139
     Daniel J. Hayes, Steve Fitzpatrick, Michael H.B. Hayes,
     and Julian R.H. Ross
7.1  Introduction ............................................. 139
7.2  Lignocellulosic Fractionation ............................ 139
     7.2.1  Acid Hydrolysis bf Polysaccharides ................ 141
     7.2.2  Production of Levulinic Acid, Formic Acid and
            Furfural .......................................... 142
7.3  The Biofine Process ...................................... 344
     7.3.1  Yields and Efficiencies of the Biofine Process .... 145
     7.3.2  Advantages over Conventional Lignocellulosic
            Technology ........................................ 146
     7.3.3  Products of The Biofine Process ................... 147
            7.3.3.1  Diphenolic Acid .......................... 148
            7.3.3.2  Succinic Acid and Derivatives ............ 149
            7.3.3.3  Delta-aminolevulinic Acid ................ 149
            7.3.3.4  Methyltetrahydrofuran .................... 150
            7.3.3.5  Ethyl Levulinate ......................... 152
            7.3.3.6  Formic Acid .............................. 153
            7.3.3.7  Furfural ................................. 154
     7.3.4  Biofine Char ...................................... 155
     7.3.5  Economics of The Biofine Process .................. 158
7.4  Conclusion ............................................... 161
     References ............................................... 162

Whole Crop Biorefinery
8    A Whole Crop Biorefinery System: A Closed System for the
     Manufacture of Non-food Products from Cereals ............ 165
     Apostolis A. Koutinas, Rouhang Wang, Grant M. Campbell,
     and Colin Webb
8.1  Intro .................................................... 165
8.2  Biorefineries Based on Wheat ............................. 167
     8.2.1  Wheat Structure and Composition ................... 167
     8.2.2  Secondary Processing of Wheat Flour Milling
            Byproducts ........................................ 169
     8.2.3  Advanced Wheat Separation Processes for Food and
            Non-food Applications ............................. 173
            8.2.3.1  Pearling as an Advanced Cereal
                     Fractionation Technology ................. 173
            8.2.3.2  Air Classification ....................... 176
     8.2.4  Biorefinery Based on Novel Dry Fractionation
            Processes of Wheat ................................ 176
            8.2.4.1  Potential Value-added Byproducts from
                     Wheat Bran-rich Fractions ................ 178
            8.2.4.2  Exploitation of the Pearled Wheat Kernel . 180
8.3  A Biorefinery Based on Oats .............................. 183
     8.3.1  Oat Structure and Composition ..................... 183
     8.3.2  Layout of a Potential Oat-based Fractionation
            Process ........................................... 183
            8.3.2.1  Potential Value-added Byproducts from
                     Oat Bran-rich Fractions .................. 185
     8.4  Summary ............................................. 187
     References ............................................... 187

Fuel-oriented Biorefineries
9    logen's Demonstration Process for Producing Ethanol
     from Cellulosic Biomass .................................. 193
     Jeffrey S. Tolan
9.1  Introduction ............................................. 193
9.2  Process Overview ......................................... 193
9.3  Feedstock Selection ...................................... 194
     9.3.1  Feedstock Composition ............................. 194
     9.3.2  Feedstock Selection ............................... 196
     9.3.3  Ethanol from Starch or Sucrose .................... 197
     9.3.4  Advantages of Making Ethanol from Cellulosic
            Biomass ........................................... 197
9.4  Pretreatment ............................................. 198
     9.4.1  Process ........................................... 198
     9.4.2  Chemical Reactions ................................ 198
     9.4.3  Other Pretreatment Processes ...................... 199
9.5  Cellulase Enzyme Production .............................. 201
     9.5.1  Production of Cellulase Enzymes ................... 201
     9.5.2  Enzyme Production on the Ethanol Plant Site ....... 202
     9.5.3  Commercial Status of Cellulase .................... 202
9.6  Cellulose Hydrolysis ..................................... 202
     9.6.1  Process Description ............................... 202
     9.6.2  Kinetics of Cellulose Hydrolysis .................. 203
     9.6.3  Improvements in Enzymatic Hydrolysis .............. 205
9.7  Lignin Processing ........................................ 205
     9.7.1  Process Description ............................... 205
     9.7.2  Alternative Uses for Lignin ....................... 206
9.8  Sugar Fermentation and Ethanol Recovery .................. 206
     References ............................................... 207

10   Sugar-based Biorefinery - Technology for Integrated
     Production of Poly(3-hydroxybutyrate), Sugar, and
     Ethanol .................................................. 209
     Carlos Eduarde Vaz Rossell, Paulo E. Mantelatto,
     Jose A.M. Agnelli, and Jefier Nascimento
10.1 Introduction ............................................. 209
10.2 Sugar Cane Agro Industry in Brazil - Historical Outline .. 209
     10.2.1 Sugar and Ethanol Production ...................... 209
     10.2.2 The Sugar Cane Agroindustry and the Green Cycle ... 210
10.3 Biodegradable Plastics from Sugar Cane ................... 212
     10.3.1 Poly(3-Hydroxybutyric Acid) ....................... 212
            10.3.1.1 Biodegradable Plastics and the
                     Environment .............................. 212
            10.3.1.2 General Aspects of Biodegradability ...... 213
     10.3.2 Poly(3-Hydroxybutyric Acid) Polymer ............... 214
            10.3.2.1 General Characteristics of
                     Poly(3-hydroxybutyric Acid) and its
                     Copolymer Poly(3-hydroxybutyric
                     Acid-co-3-hydroxyvaleric Acid) ........... 214
            10.3.2.2 Processing of Poly(Hydroxybutyrates) ..... 215
10.4 Poly(3-Hydroxybutyric Acid) Production Process ........... 217
     10.4.1 Sugar Fermentation to Poly(3-Hydroxybutyric
            Acid) by Ralstonia eutropha ....................... 217
     10.4.2 Downstream Processing for Recovery and
            Purification of Intracellular
            Poly(3-Hydroxybutyric Acid) ....................... 218
            10.4.2.1 Processes for Extraction and
                     Purification of Poly(hydroxyalkanoates) .. 218
            10.4.2.2 Chemical Digestion ....................... 218
            10.4.2.3 Enzymatic Digestion ...................... 219
            10.4.2.4 Solvent Extraction ....................... 219
     10.4.3 Integration of Poly(3-Hydroxybutyric Acid)
            Production in a Sugar Mill ........................ 221
     10.4.4 Investment and Production Cost of
            Poly(3-Hydroxybutyric Acid) in a Sugar Mill ....... 222
10.5 Outlook and Perspectives ................................. 223
     References ............................................... 225

Biorefineries Based on Thermochemical Processing
11   Biomass Refineries Based on Hybrid Thermochemical-
     Biological Processing - An Overview ...................... 227
     Robert C. Brown
11.1 Introduction ............................................. 227
11.2 Historical Outline ....................................... 228
     11.2.1 Origins of Biorefineries Based on Syngas
            Fermentation ...................................... 228
     11.2.2 Origins of Biorefineries Based on Fermentation
            of Bio-oils ....................................... 229
11.3 Gasification-Based Systems ............................... 230
     11.3.1 Fundamentals of Gasification ...................... 230
     11.3.2 Fermentation of Syngas ............................ 233
            11.3.2.1 Production of Organic Acids .............. 234
            11.3.2.2 Production of Alcohols ................... 235
            11.3.2.3 Production of Polyesters ................. 236
     11.3.3 Biorefinery Based on Syngas Fermentation .......... 239
     11.3.4 Enabling Technology ............................... 240
11.4 Fast Pyrolysis-based Systems ............................. 241
     11.4.1 Fundamentals of Fast Pyrolysis .................... 241
     11.4.2 Fermentation of Bio-oils .......................... 244
     11.4.3 Biorefineries Based on Fast Pyroylsis ............. 246
     11.4.4 Enabling Technologies ............................. 248
11.5 Outlook and Perspectives ................................. 249
     References ............................................... 250

Green Biorefineries
12   The Green Biorefiner Concept - Fundamentals and
     Potential ................................................ 253
     Stefan Kromus, Birgit Kamm, Michael Kamm, Paul Fowler,
     and Michael Narodoslawsky
12.1 Introduction ............................................. 253
12.2 Historical Outline ....................................... 254
     12.2.1 The Inceptions .................................... 254
     12.2.2 First Production of Leaf Protein Concentrate ...... 254
     12.2.3 First Production of Leaf Dyes ..................... 257
12.3 Green Biorefinery Raw Materials .......................... 258
     12.3.1 Raw Materials ..................................... 258
     12.3.2 Availability of Grassland Feedstocks for
            Large-scale Green Biorefineries ................... 259
     12.3.3 Key Components of Green and Forage Grasses ........ 260
            12.3.3.1 Structural Cell Wall Constituents ........ 260
            12.3.3.2 Cell Contents ............................ 265
12.4 Green Biorefinery Concept ................................ 269
     12.4.1 Fundamentals and Status Quo ....................... 269
     12.4.2 Wet Fractionation and Primary Refinery ............ 271
12.5 Processes and Products ................................... 273
     12.5.1 The Juice Fraction ................................ 273
            12.5.1.1 Green Juice .............................. 273
     12.5.2 GJ Drinks/Alternative Life ........................ 275
            12.5.2.1 Silage Juice ............................. 276
     12.5.3 Ingredients and Specialties ....................... 277
            12.5.3.1 Proteins/Polysacharides .................. 277
            12.5.3.2 Cholesterol Mediation .................... 277
            12.5.3.3 Antifeedants ............................. 277
            12.5.3.4 Silica ................................... 277
            12.5.3.5 Silicon Carbide .......................... 278
            12.5.3.6 Filter Aids 278
            12.5.3.7 Zeolites ................................. 278
     12.5.4 The Press-Cake (Fiber) Fraction ................... 278
            12.5.4.1 Fibers ................................... 280
            12.5.4.2 Chemicals ................................ 282
            12.5.4.3 Residue Utilization ...................... 283
     12.6 Green Biorefinery - Economic and Ecological
          Aspects ............................................. 283
     12.7 Outlook and Perspectives ............................ 285
   Acknowledgment ............................................. 285
   References ................................................. 285

13   Plant Juice in the Biorefinery - Use of Plant Juice as
     Fermentation Medium ...................................... 295
     Margrethe Andersen, Pauli Kiel, and Mette Hedegaard
     Thomsen
13.1 Introduction ............................................. 295
13.2 Historical Outline ....................................... 295
13.3 Biobased Poly(lactic Acid) ............................... 296
     13.3.1 Fermentation Processes ............................ 296
     13.3.2 The Green Biorefinery ............................. 296
     13.3.3 Lactic Acid Fermentation .......................... 298
     13.3.4 Brown Juice as a Fermentation Medium .............. 298
13.4 Materials and Methods .................................... 299
     13.4.1 Analytical Methods ................................ 299
            13.4.1.1 Sugar Analysis ........................... 299
            13.4.1.2 Analysis of Organic Acids ................ 299
            13.4.1.3 Analysis of Minerals ..................... 299
            13.4.1.4 Analysis of Vitamins ..................... 299
            13.4.1.5 Analysis of Amino Acids .................. 299
            13.4.1.6 Analysis of Protein ...................... 299
     13.4.2 Fed Batch Fermentation of Brown Juice with Lb.
            salivarius ВС 1001 ................................ 299
     13.4.3 Pilot Scale Continuous Fermentation with Lb.
            salivarius ВС 1001 ................................ 300
     13.4.4 Study of Potato Juice Quality During Aerobic and
            Anaerobic Storage ................................. 300
13.5 Brown Juice .............................................. 300
     13.5.1 Chemical Composition .............................. 300
     13.5.2 Seasonal Variations ............................... 302
     13.5.3 Lactic Acid Fermentation of Brown Juice ........... 305
     13.5.4 The Green Crop-drying Industry as a Lactic Acid
            Producer .......................................... 306
13.6 Potato Juice ............................................. 309
     13.6.1 Potato Juice as Fermentation Medium ............... 309
     13.6.2 The Potato Starch Industry as Lactic Acid
            Producer .......................................... 310
13.7 Carbohydrate Source ...................................... 311
13.8 Purification of Lactic Acid .............................. 312
13.9 Conclusion and Outlook ................................... 313
     Acknowledgments .......................................... 313
     References ............................................... 323

Part III Biomass Production and Primary Biorefineries

14   Biomass Commercialization and Agriculture Residue
     Collection ............................................... 317
     James Hettenhaus
14.1 Introduction ............................................. 317
14.2 Historical Outline ....................................... 318
     14.2.1 Case Study: Harlan, Iowa Corn Stover Collection
            Project ........................................... 319
     14.2.2 Case Study: Bagasse Storage - Dry or Wet? ......... 321
            14.2.2.1 Dry Storage .............................. 321
            14.2.2.2 Wet Storage .............................. 323
14.3 Biomass Value ............................................ 324
     14.3.1 Soil Quality ...................................... 324
     14.3.2 Farmer Value ...................................... 325
     14.3.3 Processor Value ................................... 327
14.4 Sustainable Removal ...................................... 328
     14.4.1 Soil Organic Material ............................. 328
     14.4.2 Soil Erosion Control .............................. 329
     14.4.3 Cover Crops ....................................... 331
14.5 Innovative Methods for Collection, Storage and
     Transport ................................................ 332
     14.5.1 Collection ........................................ 332
            14.5.1.1 Baling ................................... 333
            14.5.1.2 One-pass Collection ...................... 333
     14.5.2 Storage ........................................... 334
            14.5.2.1 Density .................................. 335
            14.5.2.2 Storage Area ............................. 335
            14.5.2.3 Storage Loss ............................. 335
            14.5.2.4 Foreign Matter and Solubles .............. 337
            14.5.2.5 Storage Investment ....................... 337
     14.5.3 Transport ......................................... 337
            14.5.3.1 Harvest Transport ........................ 338
            14.5.3.2 Biorefinery Supply ....................... 338
14.6 Establishing Feedstock Supply ............................ 339
     14.6.1 Infrastructure .................................... 340
            14.6.1.1 Infrastructure Investment ................ 340
            14.6.1.2 Organization Infrastructure .............. 340
14.7 Perspectives and Outlook ................................. 341
     References ............................................... 342

15   The Corn Wet Milling and Corn Dry Milling Industry -
     A Base for Biorefinery Technology Developments ........... 345
     Donald L. Johnson
15.1 Introduction ............................................. 345
     15.1.1 Corn - Wet and Dry Milling - Existing
            Biorefineries ..................................... 345
15.2 The Corn Refinery ........................................ 346
     15.2.1 Wet Mill Refinery ................................. 346
     15.2.2 Dry Mill Refinery ................................. 346
     15.2.3 Waste Water Treatment ............................. 347
15.3 The Modern Corn Refinery ................................. 348
     15.3.1 Background and Definition ......................... 348
     15.3.2 Technologies and Products ......................... 348
     15.3.3 Refinery Economy .................................. 350
            15.3.3.1 Refinery Economy of Scale and Location
                     Considerations ........................... 350
15.4 Carbohydrate Refining .................................... 352
15.5 Outlook and Perspectives ................................. 352
     References ............................................... 352

Part IV Biomass Conversion: Processes and Technologies
16   Enzymes for Biorefineries ................................ 357
     Sarah A. Teter, Feng Xu, Clenn E. Nedwin, and Joel
     R. Cherry
16.1 Introduction ............................................. 357
16.2 Biomass as a Substrate ................................... 359
     16.2.1 Composition of Biomass ............................ 359
            16.2.1.1 Cellulose ................................ 359
            16.2.1.2 Hemicellulose ............................ 360
            16.2.1.3 Lignin ................................... 360
            16.2.1.4 Starch ................................... 360
            16.2.1.5 Protein .................................. 361
            16.2.1.6 Lipids and Other Extracts ................ 361
     16.2.2 Biomass Pretreatment .............................. 361
            16.2.2.1 Dilute Acid Pretreatment ................. 362
            16.2.2.2 Ammonia Fiber Explosion .................. 362
            16.2.2.3 Hot-wash Pretreatment..................... 362
            16.2.2.4 Wet Oxidation ............................ 363
16.3 Enzymes Involved in Biomass Biodegradation ............... 363
     16.3.1 Glucanases or Cellulases .......................... 364
     16.3.2 Hemicellulases .................................... 364
     16.3.3 Nonhydrolytic Biomass-active Enzymes .............. 365
     16.3.4 Synergism of Biomass-degrading Enzymes ............ 365
16.4 Cellulase Development for Biomass Conversion ............. 366
     16.4.1 Optimization of the CBH-EG-BG System .............. 366
            16.4.1.1 BG Supplement ............................ 366
            16.4.1.2 Novel Cellulases with Better Thermal
                     Properties ............................... 367
            16.4.1.3 Structure-Function Relationship of EG .... 370
     16.4.2 Other Proteins Potentially Beneficial for
            Biomass Conversion ................................ 371
            16.4.2.1 Secretome of Cellulolytic Fungi .......... 371
            16.4.2.2 Hydrolases ............................... 373
            16.4.2.3 Nonhydrolytic proteins ................... 374
16.5 Expression of Cellulases ................................. 374
16.6 Range of Biobased Products ............................... 375
     16.6.1 Fuels ............................................. 376
     16.6.2 Fine/Specialty Chemicals .......................... 378
     16.6.3 Fuel Cells ........................................ 378
16.7 Biorefineries: Outlook and Perspectives .................. 380
     16.7.1 Potential of Biomass-based Material/Energy
            Sources ........................................... 380
     16.7.2 Economic Drivers Toward Sustainability ............ 381
     References ............................................... 382

17   Biocatalytic and Catalytic Routes for the Production of
     Bulk and Fine Chemicals from Renewable Resources ......... 385
     Thomas Willke, Ulf Prüße, and Klaus-Dieter Vorlop
17.1 Introduction ............................................. 385
     17.1.1 Renewable Resources ............................... 385
     17.1.2 Products .......................................... 386
            17.1.2.1 Bulk Chemicals and Intermediates ......... 386
            17.1.2.2 Fine Chemicals and Specialties ........... 386
17.2 Historical Outline ....................................... 387
17.3 Processes ................................................ 388
     17.3.1 Immobilization .................................... 389
     17.3.2 Biocatalytic Routes from Renewable Resources to
            Solvents or Fuels ................................. 390
            17.3.2.1 Ethanol Production with Bacteria or
                     Yeasts? .................................. 390
     17.3.3 Biocatalytic Route from Glycerol to
            1,3-Propanediol ................................... 393
            17.3.3.1 Introduction ............................. 393
            17.3.3.2 The Process .............................. 393
     17.3.4 Biocatalytic Route from Inulin to Difractose
            Anhydride ......................................... 397
            17.3.4.1 Introduction ............................. 397
            17.3.4.2 Enzyme Screening ......................... 398
            17.3.4.3 Genetic Engineering ...................... 398
            17.3.4.4 Fermentation of the Recombinant E. coli .. 399
            17.3.4.5 Enzyme Immobilization and Scale-up ....... 400
            17.3.4.6 Summary .................................. 401
     17.3.5 Chemical Route from Sugars to Sugar Acids ......... 402
            17.3.5.1 Introduction ............................. 402
            17.3.5.2 Gold Catalysts ........................... 403
            17.3.5.3 Summary .................................. 405
     References ............................................... 405

Volume 2

Part I Biobased Product Family Trees
Carbohydrate-based Product Lines
1    The Key Sugars of Biomass: Availability, Present
     Non-Food Uses and   Potential Future Development Lines ..... 3
     Frieder W. Lichtenthaler
1.1  Introduction ............................................... 3
1.2  Availability of Mono- and Disaccharides .................... 4
1.3  Current Non-Food Industrial Uses of Sugars ................. 7
     1.3.1  Ethanol ............................................. 7
     1.3.2  Furfural ............................................ 8
     1.3.3  D-Sorbitol (≡ D-Glucitol) ........................... 9
     1.3.4  Lactic Acid → Polylactic Acid (PLA) ................ 10
     1.3.5  Sugar-based Surfactants ............................ 21
     1.3.6  'Sorbitan' Esters .................................. 11
     1.3.7  N-Methyl-N-acyl-glucamides (NMGA) .................. 12
     1.3.8  Alkylpolyglucosides (APG) .......................... 22
     1.3.9  Sucrose Fatty Acid Monoesters ...................... 13
     1.3.10 Pharmaceuticals and Vitamins ....................... 14
1.4  Toward Further Sugar-based Chemicals: Potential
     Development Lines ......................................... 14
     1.4.1  Furan Compounds .................................... 26
            1.4.1.1  5-Hydroxymethylfurfural (HMF) ............. 26
            1.4.1.2  5-(Glucosyloxymethyl)furfural (GMF) ....... 27
            1.4.1.3  Furans with a Tetrahydroxybutyl
                     Side-chain ................................ 29
     1.4.2  Pyrones and Dihydropyranones ....................... 20
     1.4.3  Sugar-derived Unsaturated N-Heterocycles ........... 24
            1.4.1.4  Pyrroles .................................. 24
            1.4.1.5  Pyrazoles ................................. 26
            1.4.1.6  Imidazoles ................................ 27
            1.4.1.7  3-Pyridinols .............................. 28
            1.4.1.8  Quinoxalines .............................. 28
     1.4.4  Toward Sugar-based Aromatic Chemicals .............. 29
     1.4.5  Microbial Conversion of Six-carbon Sugars into
            Simple Carboxylic Acids and Alcohols ............... 32
            1.4.5.1  Carboxylic Acids .......................... 34
            1.4.5.2  Potential Sugar-based Alcohol
                     Commodities Obtained by Microbial
                     Conversions ............................... 36
     1.4.6  Chemical Conversion of Sugars into Carboxylic
            Acids .............................................. 37
     1.4.7  Biopolymers from Polymerizable Sugar Derivatives ... 40
            1.4.7.1  Synthetic Biopolyesters ................... 41
            1.4.7.2  Microbial Polyesters ...................... 44
            1.4.7.3  Polyamides ................................ 45
            1.4.7.4  Sugar-based Olefinic Polymers
                     ("Polyvinylsaccharides") .................. 47
     1.5  Conclusion ........................................... 49
     References ................................................ 52

2    Industrial Starch Platform - Status quo of Production,
     Modification and Application .............................. 62
     Dietmar R. Crüll, Franz Jetzinger, Martin Kozich,
     Marnik M. Wastyn, and Robert Wittenberger
2.1  Introduction .............................................. 61
     2.1.1  History of Starch .................................. 61
     2.1.2  History of Industrial Starch Production ............ 62
     2.1.3  History of Starch Modification ..................... 62
2.2  Raw Material for Starch Production ........................ 63
2.3  Industrial Production of Starch ........................... 65
     2.3.1  Maize and Waxy Maize ............................... 66
     2.3.2  Wheat .............................................. 66
     2.3.3  Potato ............................................. 69
     2.3.4  Tapioca ............................................ 70
     2.3.5  Other Starches ..................................... 71
2.4  Properties of Commercial Starches ......................... 72
2.5  Modification of Starch Water .............................. 76
     2.5.1  Modification Technology ............................ 76
            2.5.1.1  Slurry Process (Heterogeneous
                     Conditions) ............................... 76
            2.5.1.2  Dry Reactions ............................. 77
            2.5.1.3  Paste Reactions (Homogeneous Conditions) .. 77
            2.5.1.4  Extrusion Cooking ......................... 77
     2.5.2  Types of Starch Modification ....................... 78
            2.5.2.1  Physical Modification ..................... 78
            2.5.2.2  Degraded Starches ......................... 79
            2.5.2.3  Chemical Modification ..................... 80
2.6  Application of Starch and Starch Derivatives .............. 82
     2.6.1  The Paper and Corrugating Industries ............... 83
            2.6.1.1  Use of Starch in the Paper Industry ....... 83
            2.6.1.2  Use of Starch in the Corrugating
                     Industry .................................. 85
     2.6.2  The Textile Industry ............................... 85
            2.6.2.1  Sizing Agents ............................. 85
            2.6.2.2  Textile-printing Thickeners ............... 86
            2.6.2.3  Finishing Agents .......................... 86
     2.6.3  Adhesives .......................................... 87
     2.6.4  Building Chemistry ................................. 87
     2.6.5  Pharmaceuticals and Cosmetics ...................... 88
     2.6.6  Laundry Starches ................................... 89
     2.6.7  Bioconversion of Starch ............................ 89
     2.6.8  Other Applications of Starch ....................... 91
2.7  Future Trends and Developments ............................ 92
     2.7.1  Tailor-made Starches by Use of Biotechnological
            Tools .............................................. 92
     2.7.2  New Modification Technologies for New Properties ... 93
     2.7.3  New Fields of Application .......................... 94
     Bibliography .............................................. 95

3    Lignocellulose-based Chemical Products and Product
     Family Trees .............................................. 97
     Birgit Kamm, Michael Kamm, Matthias Schmidt, Thomas
     Hirth, and Margit Schulze
3.1  Introduction .............................................. 97
3.2  Historical Outline of Chemical and Technical Aspects of
     Utilization Lignocellulose in the 19th and 20th Century ... 98
     3.2.1  From the Beginnings of Lignocellulose Chemistry
            Until 1800 ......................................... 98
     3.2.2  Lignocellulose Chemistry in the Eighteenth
            Century ............................................ 99
            3.2.2.1  Cellulose Saccharification ................ 99
            3.2.2.2  Oxalic Acid ............................... 99
            3.2.2.3  Xyloidin and Nitrocellulose ............... 99
            3.2.2.4  Cellulose ................................ 100
            3.2.2.5  Levulinic Acid ........................... 100
            3.2.2.6  Lignin ................................... 101
            3.2.2.7  Hemicellulose (Polyoses) and Furfural .... 101
            3.2.2.8  Lignocellulose ........................... 202
     3.2.3  Industrial Lignocellulose Utilization in the
            19th and Beginning of the 20th Century ............ 102
3.3  Lignocellulosic Raw Material ............................. 203
     3.3.1  Definition ........................................ 203
     3.3.2  Sources and Composition ........................... 205
            3.3.2.1  Sources .................................. 205
     3.3.1  Chemical Composition of Lignocelluloses ........... 106
            3.3.2.3  Carbohydrates in Lignocelluloses ......... 108
3.4  Lignocelluloses in Biorefineries ......................... 110
     3.4.1  Background ........................................ 110
            3.4.1.1  Example 1 ................................ 110
            3.4.1.2  Example 2 ................................ 110
     3.4.2  LCF Biorefinery ................................... 111
     3.4.3  LCF Conversion Methods ............................ 113
            3.4.3.1  Pretreatment Methods ..................... 113
            3.4.3.2  Chemical Pulping Methods ................. 114
            3.4.3.3  Enzymatic Methods ........................ 115
3.5  Lignin-based Product Lines ............................... 116
     3.5.1  Isolation and Application Areas ................... 116
     3.5.2  A Lignin-based Product Family Tree ................ 117
3.6  Hemicellulose-based Product Lines ........................ 119
     3.6.1  Isolation and Application Areas ................... 119
     3.6.2  A Hemicellulose-based Product Family Tree ......... 119
            3.6.2.1  Mannan/Mannose Product Lines ............. 119
            3.6.2.2  Xylan/Xylose Product Line ................ 120
     3.6.3  Furfural and Furfural-based Products .............. 122
            3.6.3.1  Furfural ................................. 122
            3.6.3.2  A Furfural-based Family Tree ............. 127
3.7  Cellulose-based Product Lines ............................ 127
     3.7.1  Isolation, Fractionation and Application Areas .... 127
     3.7.2  Cellulose-based Key Chemicals ..................... 128
            3.7.2.1  Glucose .................................. 128
            3.7.2.2  Sorbitol ................................. 129
            3.7.2.3  Glucosides ............................... 130
            3.7.2.4  Fructose ................................. 131
            3.7.2.5  Ethanol .................................. 132
            3.7.2.6  Hydroxymethylfurfural .................... 133
            3.7.2.7  Levulinic Acid ........................... 134
     3.7.3  An HMF and Levulinic Acid-based Family Tree ....... 135
3.8  Outlook and Perspectives ................................. 138
     References ............................................... 139

Lignin Line and Lignin-based Product Family Trees
4    Lignin Chemistry and its Role in Biomass Conversion ...... 151
     Costa Brunow
4.1  Introduction ............................................. 151
4.2  Historical Overview ...................................... 152
4.3  The Structure of Lignin .................................. 152
     4.3.1  Definition ........................................ 152
     4.3.2  The Bonding of the Phenylpropane Units ............ 153
     4.3.3  Bonding Pattems and Functional Groups ............. 256
            4.3.3.1  General .................................. 156
            4.3.3.2  Survey of Different Types of Lignin
                     Unit ..................................... 156
4.4  Role of Lignin in Biomass Conversion ..................... 159
     4.4.1  Introduction ...................................... 159
     4.4.2  Low-molecular-weight Chemicals from Lignin ........ 260
     4.4.3  Polymeric Products ................................ 260
     4.4.4  Biodegradation .................................... 260
     References ............................................... 260

5    Industrial Lignin Production and Applications ............ 265
     E. Kendall Pye
5.1  Introduction ............................................. 165
5.2  Historical Outline of Lignin Production and
     Applications ............................................. 168
     5.2.1  Lignosulfonates from the Sulfite Pulping
            Industry .......................................... 168
     5.2.2  Lignin from the Kraft Pulping Industry ............ 169
     5.2.3  Lignin from the Soda Pulping Industry ............. 170
5.3  Existing Industrial Lignin Products ...................... 272
     5.3.1  Lignosulfonates ................................... 272
            5.3.1.1  Chemical Characteristics of
                     Lignosulfonates .......................... 272
            5.3.1.2  Lignosulfonate Producers ................. 273
            5.3.1.3  Markets for Lignosulfonates .............. 274
     5.3.2  Kraft Pulping and Kraft Lignin Recovery ........... 275
            5.3.2.1  Producers of Kraft Lignin ................ 275
            5.3.2.2  Markets for Kraft Lignin ................. 275
     5.3.3  Lignins Produced from the Soda Process ............ 276
     5.3.4  Lignin from Other Biomass Processing Operations ... 276
     5.3.5  Comparisons of the Physical and Chemical
            Properties of Commercially Available Lignins ...... 276
5.4  Lignin from Biorefineries ................................ 277
     5.4.1  Advantages of Ligtoin and Hemicellulose Removal
            on Saccharification and Fermentation of
            Cellulose ......................................... 277
     5.4.2  Lignin from an Organosolv Biorefinery ............. 279
5.5  Applications and Markets for Lignin ...................... 182
     5.5.1  Phenol-Formaldehyde Resin Applications ............ 282
     5.5.2  The Potential Use of Biorefinery Lignin in
            Phenolic Resins ................................... 282
     5.5.3  Panelboard Adhesives .............................. 283
     5.5.4  Thermoset Resins for Molded Products .............. 284
     5.5.5  Friction Materials ................................ 284
     5.5.6  Foundry Resins .................................... 284
     5.5.7  Insulation Materials .............................. 285
     5.5.8  Decorative Laminates .............................. 285
     5.5.9  Panel and Door Binders ............................ 285
     5.5.10 Rubber Processing ................................. 286
     5.5.11 The Opportunity for Lignin in Phenol-
            Formaldehyde Resin Markets ........................ 187
5.6  Lignin as an Antioxidant ................................. 187
     5.6.1  Antioxidants in Animal Feed Supplements ........... 188
     5.6.2  Antioxidants in the Rubber Industry ............... 188
     5.6.3  Antioxidants in the Lubricants Industry ........... 288
5.7  Applications for Water-soluble, Derivatized Lignins ...... 189
     5.7.1  Concrete Admixtures ............................... 189
     5.7.2  Dye Dispersants ................................... 190
     5.7.3  Asphalt Emulsifiers ............................... 192
     5.7.4  Agricultural Applications ......................... 192
     5.7.5  Dispersants for Herbicides, Pesticides and
            Fungicides ........................................ 193
5.8  New and Emerging Markets for Lignin ...................... 194
     5.8.1  Printed Circuit Board Resins ...................... 194
     5.8.2  Animal Health Applications ........................ 195
     5.8.3  Animal Feed Supplement ............................ 196
     5.8.4  Carbon Fibers for Mass-produced Vehicles .......... 196
5.9  Conclusions and Perspectives ............................. 198
     References ............................................... 199

Protein Line and Amino Acid-based Product Family Trees
6    Towards Integration of Biorefinery and Microbial Amino
     Acid Production .......................................... 201
     Achim Marx, Volker F. Wendisch, Ralf Kelle, and Stefan
     Buchholz
6.1  Introduction ............................................. 201
6.2  Present State of the Industry ............................ 202
     6.2.1  Microbial Amino Acid Production ................... 202
     6.2.2  Biorefinery and the Building-block Concept ........ 202
     6.2.3  Metabolic Engineering and the Building-block
            Concept ........................................... 204
6.3  Environmental and Commercial Consideration of Microbial
     Amino Acid Production Integrated in a Biorefinery ........ 205
6.4  Technical Constraints for Integration of Microbial
     Amino Acid Fermentation into a Biorefinery ............... 209
     6.4.1  Mono-septic Operation ............................. 209
     6.4.2  Carbon Sources .................................... 209
     6.4.3  Nitrogen Source ................................... 211
     6.4.4  Phosphorus Source ................................. 211
     6.4.5  Mixing and Oxygen Supply .......................... 212
     6.4.6  Toxicity .......................................... 212
     6.4.7  Cultivation Temperature ........................... 213
6.5  Outlook and Perspectives ................................. 213
     Acknowledgment............................................ 214
     References ............................................... 215

7    Protein-based Polymers: Mechanistic Foundations for
     Bioproduction and Engineering ............................ 217
     Dan W. Urry
7.1  Introduction ............................................. 217
     7.1.1  Definitions ....................................... 217
            7.1.1.1  Proteins and Protein-based Polymers ...... 217
            7.1.1.2  Two Basic Principles for Protein-based
                     Polymer Engineering ...................... 217
     7.1.2  Proteins in Aqueous Media ......................... 218
     7.1.3  Thermodynamics of Proteins in Water ............... 218
            7.1.3.1  Exothermic Hydration of Apolar Groups .... 218
            7.1.3.2  The Change in Gibbs Free Energy of
                     Hydrophobic Association .................. 218
            7.1.3.3  The Apolar-Polar Repulsive Free Energy
                     of Hydration, ΔGap ...................... 218
     7.1.4  The Inverse Temperature Transition for
            Hydrophobic Association ........................... 219
     7.1.5  The Role of Elasticity in the Engineering of
            Protein-based Polymers ............................ 219
            7.1.5.1  Near Ideal Elasticity Provides for
                     Efficient Energy Conversion .............. 219
            7.1.5.2  Mechanism of Near Ideal Elasticity ....... 220
     7.1.6  Many of the Advantages of Protein-based
            Polymeric Materials ............................... 220
7.2  Historical Outline ....................................... 221
     7.2.1  Historical Beginnings of (Elastic) Protein-based
            Polymer Development ............................... 221
     7.2.2  Mechanistic Foundations: Fundamental Engineering
            Principles ........................................ 222
            7.2.2.1  The Hydrophobic Consilient Mechanism ..... 222
            7.2.2.2  The Elastic Consilient Mechanism ......... 223
     7.2.3  Highlights of Bioproduction ....................... 223
7.3  Bioproduction ............................................ 224
     7.3.1  Gene Construction using Recombinant DNA
            Technology......................................... 225
            7.3.1.1  Preparation of Monomer Genes and the
                     PCR Technique ............................ 225
            7.3.1.2  Transformation, Monomer Gene Production
                     and Sequence Verification ................ 226
            7.3.1.3  Monomer Gene Concatenation Produces
                     Multimer Genes of Monomer ................ 226
     7.3.2  E. coli Transformation for Protein-based Polymer
            Expression ........................................ 227
     7.3.3  Fermentation using Transformed E. coli ............ 227
7.4  Purification of Protein-based Polymers ................... 227
     7.4.1  Use of the Inverse Temperature Transition as
            a Method of Purification .......................... 228
            7.4.1.1  Purification by Phase Separation as
                     Demonstrated by SDS-PAGE ................. 228
            7.4.1.2  Purification by Phase Separation Shown
                     by Carbon-14-labeled E. coli ............. 228
     7.4.2  Physical Characterization and Verification of
            Product Integrity ................................. 229
            7.4.2.1  Gross Visualization of the Phase
                     Separated Product ........................ 229
            7.4.2.2  Sequence Integrity and Purity Evaluated
                     by Nuclear Magnetic Resonance ............ 229
            7.4.2.3  Mass Spectra Reaffirm Size of Expressed
                     Polymer .................................. 229
     7.4.3  Biocompatibility .................................. 230
            7.4.3.1  The Challenge of Using E. coii-produced
                     Protein as a Biomaterial ................. 230
            7.4.3.2  Removal of Endotoxins and Determination
                     of Levels ................................ 230
            7.4.3.3  Western Immunoblot Technique to
                     Demonstrate Level of Purity .............. 230
     7.4.3  A Western Immunodotblot Technique to Demonstrate
            Medical Grade Purity .............................. 231
            7.4.3.5  Subcutaneous Injection in the
                     Guinea-pig ............................... 231
            7.4.3.6  ASTM Tests ............................... 232
7.5  Mechanistic Foundations for Engineering Protein-based
     Polymers ................................................. 232
     7.5.1  Phenomenological Axioms ........................... 232
     7.5.2  The Change in Gibbs Free Energy for Hydrophobic
            Association, ΔGHA ................................. 232
            7.5.2.1  The Change in Gibbs Free Energy
                     Attending a Phase Transition, δΔGt(χ) .... 234
            7.5.2.2  The ΔGHA-based Hydrophobicity Scale for
                     Amino Acid Residues ...................... 234
            7.5.2.3  ΔG°HA-based Hydrophobicity Scale of
                     Prosthetic Groups, etc. .................. 235
            7.5.2.4  Comprehensive Hydrophobic Effect: δGHA
                     Responds to all Variables ................ 237
            7.5.2.5  The Apolar-Polar Repulsive Free Energy
                     of Hydration, ΔGap ....................... 237
     7.5.3  The Coupling of Hydrophobic and Elastic
            Mechanisms ........................................ 237
7.6  Examples of Applications ................................. 238
     7.6.1  Soft Tissue Restoration ........................... 238
            7.6.1.1  Prevention of Post-surgical Adhesions .... 238
            7.6.1.2  Soft Tissue Augmentation ................. 238
            7.6.1.3  Soft Tissue Reconstruction: The Concept
                     of Temporary Functional Scaffoldings ..... 239
     7.6.2  Controlled Release Devices for Amphiphilic Drugs
            and Therapeutics .................................. 240
            7.6.2.1  The Use of AGap in the Design of
                     Controlled-release Devices ............... 240
            7.6.2.2  Prevention of Pressure Ulcers by Means
                     of Elastic Patches for Drag Delivery ..... 240
     7.6.3  Fibers of Improved Elastic Moduli and Break
            Stresses and Strains .............................. 241
     7.6.4  Programmably Biodegradable Thermoplastics ......... 241
     7.6.5  Acoustic Absorption ............................... 242
7.7  Outlook and Perspectives ................................. 242
     7.7.1  List of Gene Constructions and Expressed
            Protein-based Polymers ............................ 242
     7.7.2  Efforts Toward Low-cost Production in other
            Microbes and in Plants ............................ 242
7.8  Patents .................................................. 245
     7.8.1  Patents of D.W. Urry on Protein-based Polymers .... 245
     7.8.2  Result of Ex Parte Patent Reexamination Request
            to the USPTO ...................................... 245
     Acknowledgment ........................................... 249
     References ............................................... 249

Biobased Fats (Lipids) and Oils
8    New Syntheses with Oils and Fats as Renewable
     Raw Materials for the Chemical Industry .................. 253
     Ursula Biermann, Wolfgang Friedt, Siegmund Lang,
     Wilfried Lühs, Guido Machmüller, Jürgen О. Metzger,
     Mark Rüsch gen. Klaas, Hans J. Schäfer, Manfred
     P. Schneider
8.1  Introduction ............................................. 253
8.2  Reactions of Unsaturated Fatty Compounds ................. 254
     8.2.1  Oxidations ........................................ 254
            8.2.1.1  New Methods for the Epoxidation of
                     Unsaturated Fatty Acids .................. 254
            8.2.1.2  Oxidation to vic-Dihydroxy Fatty Acids ... 257
            8.2.1.3  Oxidative Cleavage ....................... 258
     8.2.2  Transition Metal-Catalyzed Syntheses of Aromatic
            Compounds ......................................... 259
     8.2.3  Olefin Metathesis ................................. 259
     8.2.4  Pericyclic Reactions .............................. 260
     8.2.5  Radical Additions ................................. 261
            8.2.5.1  Solvent-Free, Copper-Initiated
                     Additions of 2-Halocarboxylates .......... 262
            8.2.5.2  Addition of Perfluoroalkyl Iodides ....... 263
            8.2.5.3  Thermal Addition of Alkanes .............. 264
     8.2.6  Lewis Acid-Induced Cationic Addition .............. 264
     8.2.7  Nucleophilic Addition to Reversed-Polarity
            Unsaturated Fatty Acids ........................... 265
8.3  Reactions of Saturated Fatty Compounds ................... 266
     8.3.1  Radical C-C Coupling .............................. 266
            8.3.1.1  Oxidative Coupling of C2 Anions of
                     Fatty Acids .............................. 266
            8.3.1.2  Anodic Homo- and Heterocoupling of
                     Fatty Acids (Kolbe Electrolysis) ......... 267
     8.3.2  Functionalization of C-H Bonds .................... 269
            8.3.2.1  Oxidation of Nonactivated C-H Bonds ...... 269
            8.3.2.2  Oxidation of Allylic C-H Bonds ........... 269
8.4  Enzymatic Reactions ...................................... 270
     8.4.1  Lipase Catalyzed Transformations .................. 270
            8.4.1.1  Lipase-Catalyzed Syntheses of
                     Monoglycerides and Diglycerides .......... 270
            8.4.1.2  Lipase-Catalyzed Syntheses of
                     Carbohydrate Esters ...................... 272
     8.4.2  Microbial Transformations ......................... 272
            8.4.2.1  Microbial Hydration of Unsaturated
                     Fatty Acids .............................. 272
            8.4.2.2  Microbial ω- and β-Oxidation of Fatty
                     Acids .................................... 273
     8.4.3  Microbial Conversion of Oils/Fats and Glucose
            into Glycolipids .................................. 274
8.5  Improvement in Natural Oils and Fats by Plant Breeding ... 275
     8.5.1  Gene Technology as an Extension of the
            Methodological Repertoire of Plant Breeding ....... 275
     8.5.2  New Oil Qualities by Oil Designed with Available
            Agricultural Varieties ............................ 276
     8.5.3  Overview of Renewable Raw Materials Optimized by
            Breeding .......................................... 277
            8.5.3.1  Soybean .................................. 277
            8.5.3.2  Rapeseed ................................. 277
            8.5.3.3  Sunflower ................................ 280
            8.5.3.4  Peanut ................................... 281
            8.5.3.5  Linseed .................................. 281
     8.5.4  Concluding Remarks on the Use of Gene Technology .. 281
8.6  Future Prospects ......................................... 282
     Acknowledgments .......................................... 282
     References ............................................... 282

9    Industrial Development and Application of Biobased
     Oleochemicals ............................................ 291
     Karlheinz Hill
9.1  Introduction ............................................. 291
9.2  The Raw Materials ........................................ 292
9.3  Ecological Compatibility ................................. 293
9.4  Examples of Products ..................................... 294
     9.4.1  Oleochemicals for Polymer Applications ............ 295
            9.4.1.1  Dimerdiols Based on Dimer Acid ........... 297
            9.4.1.2  Polyols Based on Epoxides ................ 298
     9.4.2  Biodegradable Fatty Acid Esters for Lubricants .... 299
     9.4.3  Surfactants and Emulsifiers Derived from
            Vegetable Oil ..................................... 301
            9.4.3.1  Fatty Alcohol Sulfate (FAS) .............. 303
            9.4.3.2  Acylated Proteins and Amino Acids
                     (Protein-Fatty Acid Condensates) ......... 304
            9.4.3.3  Carbohydrate-based Surfactants - Alkyl
                     Polyglycosides ........................... 305
            9.4.3.4  Alkyl Polyglycoside Carboxylate .......... 307
            9.4.3.5  Polyol Esters ............................ 307
            9.4.3.6  Multifunctional Care Additives for Skin
                     and Hair ................................. 309
     9.4.4  Emollients ........................................ 310
            9.4.4.1  Introduction ............................. 310
            9.4.4.2  Dialkyl Carbonate ........................ 311
            9.4.4.3  Guerbet Alcohols ......................... 311
9.5  Perspectives ............................................. 312
9.6  Trademarks ............................................... 312
     References ............................................... 312

Special Ingredients and Subsequent Products
10   Phytochemicals, Dyes, and Pigments in the Biorefinery
     Context .................................................. 315
     George A. Kraus
10.1 Introduction ............................................. 315
10.2 Historical Outline ....................................... 316
10.3 Phytochemicals from Corn and Soybeans .................... 317
     10.3.1 Phytosterols ...................................... 317
     10.3.2 Lecithin .......................................... 318
     10.3.3 Tocopherols ....................................... 319
     10.3.4 Carotenoids ....................................... 320
     10.3.5 Phytoestrogens .................................... 321
     10.3.6 Saponins .......................................... 321
     10.3.7 Protease Inhibitors ............................... 322
10.4 Outlook and Perspectives ................................. 323
     References ............................................... 323

11   Adding Color to Green Chemistry? An Overview of the
     Fundamentals and Potential of Chlorophylls ............... 325
     Mathias О. Senge and Julia Richter
11.1 Introduction ............................................. 325
11.2 Historical Outline ....................................... 325
11.3 Chlorophyll Fundamentals ................................. 326
     11.3.1 Occurrence and Basic Structures ................... 326
     11.3.2 Principles of Chlorophyll Chemistry ............... 327
     11.3.3 Isolation of Chlorophylls ......................... 328
11.4 Chlorophyll Breakdown and Chemical Transformations ....... 330
     11.4.1 Biological Chlorophyll Catabolism ................. 330
     11.4.2 Geological Chlorophyll Degradation -
            Petroporphyrins ................................... 331
     11.4.3 Chemical Degradation of Chlorophylls .............. 333
11.5 Industrial Uses of Chlorophyll Derivatives ............... 335
11.6 A Look at "Green" Chlorophyll Chemistry .................. 337
11.7 Outlook and Perspectives ................................. 339
     Acknowledgment ........................................... 341
     References and Notes ..................................... 341

Part II Biobased Industrial Products, Materials and Consumer
Products

12   Industrial Chemicals from Biomass - Industrial Concepts .. 347
     Johan Thoen and Rainer Busch
12.1 Introduction ............................................. 347
12.2 Historical Outline ....................................... 347
12.3 Basic Principles ......................................... 349
     12.3.1 Primary Conversion Technologies of Biomass ........ 350
            12.3.1.1 Gasification ............................. 350
            12.3.1.2 Hydrothermolysis ......................... 351
            12.3.1.3 Fermentation to Ethanol .................. 351
12.4 Current Status ........................................... 352
     12.4.1 Europe ............................................ 351
     12.4.2 United States ..................................... 353
     12.4.3 Products .......................................... 353
12.5 Industrial Concepts ...................................... 354
     12.5.1 Introduction ...................................... 354
     12.5.2 Biorefinery Concepts .............................. 355
     12.5.3 Classes of Bioproduct ............................. 356
     12.5.4 Opportunities for Industrial Bioproducts .......... 357
     12.5.5 Product Categories Based on C6-Carbon Sugars to
            Bioproducts ....................................... 358
     12.5.6 Product Categories Based on C5-Carbon Sugars to
            Bioproducts ....................................... 358
     12.5.7 Thermochemical Conversion of Sugars to
            Bioproducts ....................................... 360
     12.5.8 Thermochemical Conversion of Oils and Lipid
            Based Bioproducts ................................. 361
     12.5.9 Bioproducts via Gasification ...................... 361
     12.5.10 Bioproducts via Pyrolysis ........................ 362
     12.5.11 Biocomposites .................................... 362
12.6 Outlook and Perspectives ................................. 362
     References ............................................... 364

13   Succinic Acid - A Model Building Block for Chemical
     Production from Renewable Resources ...................... 367
     Todd Werpy, John Frye, and John Holladay
     13.1 Introduction ........................................ 367
     13.2 Economics of Feedstock Supply ....................... 368
     13.3 Succinic Acid Fermentation .......................... 369
     13.4 Succinic Acid Catalytic Transformations ............. 372
     13.5 Current Petrochemical Technology .................... 373
          13.5.1 1,4-BDO, THF, GBL, and NMP ................... 373
13.6 Current Biobased Technology .............................. 375
     13.6.1 1,4-BDO, GBL, and NMP ............................. 375
     13.6.2 Derivatives of Diammonium Succinate ............... 376
13.7 Conclusions .............................................. 378
     References ............................................... 378

14   Polylactic Acid from Renewable Resources ................. 381
     Patrick Gruber, David E. Henton, and Jack Starr
14.1 Introduction ............................................. 381
14.2 Lactic Acid .............................................. 382
     14.2.1 Lactic Acid Production Routes ..................... 382
            14.2.1.1 Chemical Synthesis ....................... 382
            14.2.1.2 Fermentation ............................. 383
     14.2.2 Production by Fermentation ........................ 384
            14.2.2.1 Microorganisms ........................... 384
            14.2.2.2 Sugar Feedstock .......................... 385
            14.2.2.3 Nutrients ................................ 385
            14.2.2.4 Neutralizing Agent ....................... 385
     14.2.3 Acidification ..................................... 386
            14.2.3.1 Strong Acid Addition ..................... 386
            14.2.3.2 Salt Splitting Technology ................ 387
     14.2.4 Purification ...................................... 388
            14.2.4.1 Cell Removal ............................. 388
            14.2.4.2 Separation of Residual Sugars,
                     Nutrients and Fermentation By-products ... 388
14.3 PLA Production ........................................... 390
     14.3.1 Polymerization of Lactide ......................... 392
14.4 Control of Crystalline Melting Point ..................... 394
14.5 Rheology Control by Molecular Weight and Branching ....... 396
     14.5.1 Melt Rheology of Linear PLA ....................... 397
     14.5.2 Melt Rheology of Branched PLA ..................... 397
     14.5.3 Branching Technology .............................. 398
            14.5.3.1 Multi-functional Polymerization
                     Initiators ............................... 398
            14.5.3.2 Hydroxy Cyclic Ester and/or Carbonate
                     Polymerization Initiators ................ 398
            14.5.3.3 Multi-cyclic Ester, Multi-cyclic
                     Carbonate and/or Multi-cyclic Epoxy
                     Comonomers ............................... 398
            14.5.3.4 Free Radical Cross-linking ............... 399
14.6 Melt Stability ........................................... 399
14.7 Applications and Performance ............................. 400
14.8 PLA Stereocomplex ........................................ 401
14.9 Fossil Resource Use and Green House Gases ................ 402
14.10 Summary ................................................. 402
     Abbreviations ............................................ 403
     References ............................................... 404

15   Biobased Consumer Products for Cosmetics ................. 409
     Thomas C. Kripp
15.1 Introduction and Historical Outline ...................... 409
     15.1.1 Cosmetics Past and Present ........................ 409
     15.1.2 Bionics: Learning from Nature ..................... 410
15.2 Betaine, The Conditioner Made from Sugar Beet ............ 410
     15.2.1 Occurrence ........................................ 410
     15.2.2 Chemical Properties ............................... 411
     15.2.3 Production ........................................ 411
     15.2.4 Use and Fields of Application ..................... 412
     15.2.5 Innovation Through Combination: Betaine Esters .... 414
     15.2.6 Summary and Prospects ............................. 415
15.3 Chitosan, Hair-setting Agent from the Ocean .............. 415
     15.3.1 Chitin, a Precursor of Chitosan ................... 415
     15.3.2 Occurrence of Chitin .............................. 415
     15.3.3 Production ........................................ 416
            15.3.3.1 Purification of Chitin ................... 416
            15.3.3.2 Production of Chitosan ................... 417
     15.3.4 Chitosan in cosmetic products ..................... 419
     15.3.5 Summary and Prospect .............................. 421
15.4 From Energy Reserve to Shampoo Bottle: Biopol ............ 422
     15.4.1 Biodegradable Packages ............................ 422
     15.4.2 What is "Biopol"? ................................. 423
     15.4.3 Biodegradability of Biopol ........................ 424
     15.4.4 The Long Way to the Shampoo Bottle ................ 426
            15.4.4.1 Product Development ...................... 426
            15.4.4.2 Market Launch ............................ 427
     15.4.5 Quo vadis, Biopol? ................................ 428
15.5 Natural Apple-peel Wax: Protection for Hair and Skin ..... 429
     15.5.1 Raw Material Source ............................... 429
     15.5.2 Apple-peel Wax .................................... 430
     15.5.3 Observations ...................................... 430
     15.5.4 Production of Apple-peel Wax ...................... 432
     15.5.5 Chemical Composition .............................. 433
     15.5.6 Mode of Action and Uses ........................... 433
            15.5.6.1 Skin Cosmetics ........................... 434
            15.5.6.2 Hair Care ................................ 434
     15.5.7 Market Launch ..................................... 436
     15.5.8 Summary and Prospects ............................. 436
15.6 Ilex Resin: From Shiny Leaves to Shiny Hair .............. 437
     15.6.1 Holly ............................................. 437
     15.6.2 Extraction of a Resin Fraction .................... 438
     15.6.3 Effects in Cosmetics .............................. 439
            15.6.3.1 Skin Care ................................ 439
            15.6.3.2 Hair Care ................................ 439
            15.6.3.3 Styling .................................. 440
     15.6.4 Summary and Prospects ............................. 440
     References ............................................... 441

Part III Biobased Industry: Economy, Commercialization and
Sustainability
16   Industrial Biotech - Setting Conditions to Capitalize
     on the Economic Potential ................................ 445
     Rolf Bachmann and Jens Riese
16.1 Introduction ............................................. 445
16.2 Time to Exploit the Potential ............................ 446
     16.2.1 How Far Can it Go? ................................ 446
     16.2.2 Better Technology, Faster Results ................. 447
     16.2.3 Environmentally and Balance-sheet Friendly ........ 448
     16.2.4 Rekindling Chemicals Innovation ................... 450
     16.2.5 Increasing Corporate Action in all Segments ....... 452
16.3 The Importance of Residual Biomass ....................... 452
     16.3.1 Why Waste Biomass Works ........................... 452
     16.3.2 Economic Benefits and Regulation .................. 452
     16.3.3 Still a Long Way to Go ............................ 454
     16.3.4 Collaboration Will Push Biomass Conversion
            Forward ........................................... 454
16.4 Overcoming the Challenges Ahead .......................... 455
     16.4.1 Internal Obstacles ................................ 455
     16.4.2 External Challenges ............................... 456
16.5 Overcoming Challenges .................................... 457
     16.5.1 Case 1: Building a Biotech Strategy ............... 457
     16.5.2 Case 2: Identifying the Right Opportunities ....... 458
     16.5.3 Case 3: Managing Uncertainties .................... 459
     16.5.4 Case 4: Preparing the Launch and Market
            Development ....................................... 460
     16.5.5 Case 5: Building a Favorable External
            Environment ....................................... 461
16.6 More Needs to be Done .................................... 461

Subject Index ................................................. 463


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:25:36 2019. Размер: 84,025 bytes.
Посещение N 1460 c 22.10.2013