Handbook of combustion; Vol.5: New technologies (Weinheim, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHandbook of combustion. Vol.5: New technologies / ed. by M.Lackner, F.Winter, A.K.Agarwal: in 5 v. - Weinheim: Wiley-VCH, 2010. - xxxv, 735 p.: ill. - Ind.: p.589-606. - ISBN 978-3-527-32449-1
 

Оглавление / Contents
 
Preface ...................................................... XVII
About the Editor .............................................. XIX
List of Contributors ........................................ XXIII
List of Abbreviations ....................................... XXVII
List of Symbols ............................................ XXXIII

1  HCCI Combustion Chemistry, Reduced Kinetic Mechanisms
   and Controlling Strategies ................................... 1
   Hatim Machrafi
   1.1  Introduction ............................................ 1
        1.1.1  Present Situation ................................ 1
        1.1.2  HCCI Engines, A New Alternative .................. 1
   1.2  HCCI Combustion ......................................... 2
        1.2.1  Definition ....................................... 2
        1.2.2  Problem of Implementing the HCCI Method .......... 4
   1.3  Chemical Kinetics in HCCI Combustion .................... 5
        1.3.1  Chemical Combustion Mechanism of Iso-Octane ...... 6
               1.3.1.1  Low-Temperature Interval ................ 6
               1.3.1.2  Intermediate-Temperature Interval ....... 7
               1.3.1.3  High-Temperature Interval ............... 8
        1.3.2  Chemical Combustion Mechanism of Iso-octane ...... 9
        1.3.3  Chemical Combustion Mechanism of Toluene ........ 10
               1.3.3.1  Initiation Reactions ................... 10
               1.3.3.2  Benzene Sub-Mechanism .................. 12
        1.3.4  Resume of the Auto-Ignition Process ............. 13
   1.4  Kinetic Mechanisms for the Study of HCCI Combustion .... 14
        1.4.1  General Discussion about the Cool Flame
               Phenomenon ...................................... 14
        1.4.2  Reduced Kinetic Mechanisms ...................... 14
        1.4.3  Experimental Validation of a Reduced Kinetic
               Mechanism ....................................... 17
   1.5  Controlling Strategies ................................. 19
        1.5.1  Control Methods ................................. 19
        1.5.2  Kinetic Mechanisms to Control the Auto-
               Ignition ........................................ 20
   1.6  Existing Applications of the HCCI Engine and its
        Future ................................................. 27
   1.7  Conclusions ............................................ 27
   References .................................................. 28

2  Simulation of Low Temperature Combustion in Engines ......... 35
   Song-Charng Kong
   2.1  Introduction ........................................... 35
   2.2  Numerical Models ....................................... 37
   2.3  HCCI Combustion ........................................ 38
   2.4  PCCI Combustion ........................................ 41
        2.4.1  Low-Pressure Injection .......................... 41
        2.4.2  High-Pressure Injection ......................... 47
   2.5  Summary ................................................ 50
   References .................................................. 50

3  Corona, Spark, and Electrothermal-Chemical Plasma
   Ignition Systems ............................................ 53
   Malay K. Das and Stefan T. Thynell
   3.1  Introduction ........................................... 53
   3.2  Plasma Fundamentals and Classifications ................ 54
   3.3  Corona and Spark Discharge ............................. 55
   3.4  Corona and Spark Ignition .............................. 56
   3.5  Electrothermal-Chemical Ignition ....................... 59
   3.6  Applications in Industry ............................... 65
   3.7  Outlook ................................................ 66
   3.8  Summary ................................................ 66
   References .................................................. 67

4  Plasma-Assisted Ignition and Combustion ..................... 71
   Svetlana M. Starikovskaia and Andrey Yu. Starikovskii
   4.1  Introduction    71
   4.2  General Principles ..................................... 72
        4.2.1  Combustion Initiation and Plasma:
               Fundamentals .................................... 72
        4.2.2  Plasma Used for Combustion Initiation ........... 73
   4.3  Experimental Evidences and Analysis of Mechanism ....... 76
        4.3.1  Ignition by Plasma under Conditions of
               Supersonic Flows ................................ 76
        4.3.2  Discharges in Low Speed Gas Flows: Sustaining
               Combustion ...................................... 80
        4.3.3  Discharge behind the Reflected Shock Wave:
               Decrease of Ignition Delay Time ................. 81
        4.3.4  Kinetic Analysis: Available Experiments and
               Numerical Modeling .............................. 82
   4.4  Outlook ................................................ 85
   4.5  Summary ................................................ 87
   References .................................................. 87

5  Laser Ignition .............................................. 95
   Tran X. Phuoc
   5.1  Introduction ........................................... 95
   5.2  Laser Ignition Energy .................................. 97
   5.3  Breakdown Threshold Laser Energy ...................... 100
        5.3.1  Multiphoton Ionization ......................... 101
        5.3.2  Cascade Breakdown Ionization ................... 102
   5.4  Spark Evolution ....................................... 106
   5.5  Ignition Mechanism .................................... 111
        5.5.1  Homogeneous Hot-Gas Model ...................... 112
        5.5.2  Blast Wave Ignition Model ...................... 113
        5.5.3  A Hot Gas Model ................................ 114
   5.6  Potential Applications and Research Needs ............. 116
        5.6.1  Laser-Induced Gas Breakdown and Evolution in
               High-Speed and Highly Turbulent Streams ........ 117
        5.6.2  Laser Ignition for Stabilization of Ultra-
               Lean and High Speed Combustion Applications .... 118
        5.6.3  Laser Ignition under Engine and/or Engine-
               Like Conditions ................................ 118
        5.6.4  Development of a Diode-Pumped Solid State
               Laser for Laser Ignition Applications .......... 120
   5.7  Conclusions ........................................... 121
   References ................................................. 122

6  Combustion Enhancement and Stabilization: Principles of
   Plasma Assistance and Diagnostics Tools .................... 125
   Axel Vincent-Randonnier
   6.1  Introduction .......................................... 125
   6.2  Diagnostics Applied to Plasma-Assisted Combustion ..... 126
        6.2.1  Imaging ........................................ 126
        6.2.2  Schlieren Flow Visualization ................... 128
        6.2.3  Interferometry ................................. 129
        6.2.4  Spectroscopy ................................... 131
        6.2.5  Laser-Induced Fluorescence ..................... 132
        6.2.6  Coherent anti-Stokes Raman Scattering
               Thermometry .................................... 136
        6.2.7  Thomson Scattering ............................. 137
        6.2.8  Gas Chromatography ............................. 138
   6.3  Effect of the Plasma Assistance on Combustion ......... 139
        6.3.1  General Considerations ......................... 139
        6.3.2  Experiments and Interpretations ................ 142
               6.3.2.1  Plasma Assistance Applied to Non-
                        Premixed or Partially Premixed
                        Combustion ............................ 142
               6.3.2.2  Plasma Assistance Applied to
                        Premixed Combustion ................... 147
               6.3.2.3  Plasma Assistance Applied to
                        Supersonic Combustion ................. 150
        6.3.3  Numerical Simulation ........................... 151
   6.4  Outlook ............................................... 154
   6.5  Summary ............................................... 155
   References ................................................. 156

7  Staged Combustion and Exhaust Gas Recirculation
   in Fluidized Beds .......................................... 161
   Markus Bolhar-Nordenkampf
   7.1  Introduction .......................................... 161
   7.2  General Aspects of Combustion ......................... 162
        7.2.1  Excess Air ..................................... 162
        7.2.2  Formation of Nitrogen Oxides ................... 162
   7.3  Staged Combustion and Flue-Gas Recirculation in Gas-
        and Oil-Fired Applications ............................ 163
        7.3.1  Low Excess Air ................................. 163
        7.3.2  Staged Combustion .............................. 164
        7.3.3  Flue-Gas Recirculation ......................... 165
        7.3.4  Reburning ...................................... 167
   7.4  Stage Combustion in Modern Grate-Fired Applications ... 168
        7.4.1  Advanced Secondary Air Supply .................. 169
   7.5  Stage Combustion and Flue-Gas Recirculation in
        Modern Bubbling Fluidized-Bed Boiler Applications ..... 171
        7.5.1  Staged Combustion .............................. 171
        7.5.2  Bed Fluidization ............................... 174
        7.5.3  Bed Temperature ................................ 174
   7.6  Outlook ............................................... 176
   1.1  Summary ............................................... 177
   References ................................................. 178

8  Hetero-/Homogeneous Combustion ............................. 181
   John Mantzaras
   8.1  Introduction .......................................... 181
   8.2  Fundamentals of Catalytic Combustion .................. 183
        8.2.1  Reactor Thermal Management ..................... 185
   8.3  Hetero-/Homogeneous Combustion in Power Generation .... 188
   8.4  Hetero-/Homogeneous Kinetics .......................... 190
        8.4.1  Fuel-Lean Methane Combustion on Platinum ....... 192
               8.4.1.1  Catalytic Kinetics .................... 192
               8.4.1.2  Gas-Phase Kinetics .................... 193
               8.4.1.3  Hetero-/Homogeneous Chemistry
                        Coupling .............................. 195
        8.4.2  Fuel-Lean Hydrogen Combustion on Platinum ...... 196
        8.4.3  Fuel-Rich Methane Combustion on Rhodium ........ 197
   8.5  Application to Practical Systems ...................... 198
   8.6  Turbulent Hetero-/Homogeneous Combustion .............. 201
   8.7  Conclusions ........................................... 202
   References ................................................. 203

9  Fluidized Bed Combustion of Natural Gas and other
   Hydrocarbons ............................................... 209
   Jean-Philippe Laviolette, Rahmat Sotudeh-Gharebagh,
   Rachid Mabrouk, Gregory S. Patience, and Jamal Chaouki
   9.1  Introduction .......................................... 209
        9.1.1  Heterogeneous and Homogeneous Kinetics ......... 210
        9.1.2  Mixing in Gas/Solid Fluidized Beds Mixing ...... 210
        9.1.3  Fluidized Bed Combustion ....................... 212
        9.1.4  Fluidized Bed Combustion Modeling .............. 212
   9.2  Heterogeneous and Homogeneous Kinetics ................ 212
        9.2.1  Homogeneous Kinetics ........................... 213
               9.2.1.1  Global Homogeneous Combustion
                        Kinetics .............................. 213
               9.2.1.2  Microkinetic Combustion Models ........ 213
               9.2.1.3  Reduced GRI Mechanism ................. 214
        9.2.2  Combined Homogeneous and Heterogeneous
               Kinetics ....................................... 216
               9.2.2.1  Inert Particles ....................... 216
                        9.2.2.1.1  Effect of Particle Size
                                   Distribution and Alumina
                                   Particles .................. 217
                        9.2.2.2.1  CO Production .............. 218

               9.2.2.2  Kinetics for Methane Combustion in
                        Inert Particles ....................... 218
               9.2.2.3  Combustion Catalysts .................. 220
               9.2.2.4  Oxygen Carriers ....................... 221
   9.3  Mixing in Gas/Solid Fluidized Beds .................... 221
        9.3.1  Superficial Gas Velocity and Bubble Size ....... 221
        9.3.2  Particle Size .................................. 221
        9.3.3  Effect of Baffles .............................. 222
        9.3.4  Sparger Flow Pattern for Non-Premixed
               Operation ...................................... 222
   9.4  Methane Fluidized Bed Combustion ...................... 225
        9.4.1  Inert Particles ................................ 226
               9.4.1.1  Fluidized Bed Temperature ............. 226
               9.4.1.2  Bubble Size and Air-to-Fuel Ratio ..... 227
               9.4.1.3  Fluidization Regime ................... 227
               9.4.1.4  CO Formation .......................... 227
               9.4.1.5  NOx Formation ......................... 229
               9.4.1.6  Particle Type and Size ................ 230
        9.4.2  Combustion Catalysts ........................... 230
        9.4.3  Oxygen Carriers/Chemical-Looping Combustion .... 230
   9.5  Fluidized Bed Combustion Modeling ..................... 230
        9.5.1  Single-Phase Models ............................ 231
        9.5.2  Two-Phase Models ............................... 231
               9.5.2.1  Model of Davidson and Harrison ........ 231
               9.5.2.2  Bubbling Bed Models ................... 232
               9.5.2.3  Bubble Assemblage Models .............. 232
               9.5.2.4  Multiple Region Models ................ 232
                        9.5.2.4.1  Models for the Grid
                                   Region ..................... 232
                        9.5.2.4.2  Models for the Freeboard
                                   Region ..................... 232
        9.5.3  Kinetic Models ................................. 232
   References ................................................. 233

10 Mild Combustion ............................................ 237
   Mariarosaria de Joannon, Pino Sabia, and Antonio
   Cavaliere
   10.1 Introduction .......................................... 237
   10.2 Definition and Properties ............................. 237
   10.3 Main Effects of Operative Conditions .................. 241
        10.3.1 Combustion Chamber Properties .................. 241
        10.3.2 Pollution Reduction/Abatement-Effect of
               Diluent Nature ................................. 243
   10.4 Identification of Basic Processes in MILD
        Combustion ............................................ 246
   10.5 Applications in Industry .............................. 250
        10.5.1 Energy Conversion Plants ....................... 251
        10.5.2 Material Treatment ............................. 252
        10.5.3 Pollution Abatement ............................ 253
   10.6 Summary and Outlook ................................... 254
   References ................................................. 255

11 Underground Coal Gasification: A Clean Coal Technology ..... 257
   Preeti Aghalayam
   11.1 Introduction .......................................... 257
   11.2 Brief Overview of UCG Field Trials and Practice ....... 258
   11.3 Mathematical Models for UCG ........................... 260
        11.3.1 Fundamental Studies Related to UCG ............. 261
               11.3.1.1 Chemical Reactions .................... 261
               11.3.1.2 Thermomechanical Spalling and Cavity
                        Growth ................................ 264
               11.3.1.3 Flow Patterns in the UCG Cavity ....... 264
        11.3.2 Process Models for UCG ......................... 265
               11.3.2.1 Reactions-Based Models ................ 266
               11.3.2.2 Flow Pattern Based Models ............. 269
               11.3.2.3 Combination Models .................... 270
   11.4 Outlook ............................................... 271
   11.5 Summary ............................................... 272
   References ................................................. 272

12 Energy from Aquatic Biomass ................................ 277
   Michele Aresta and Angela Dibenedetto
   12.1 Introduction .......................................... 277
   12.2 Energy from Terrestrial Biomass ....................... 279
   12.3 The Aquatic Biomass Option: Perspectives and
        Barriers to Exploitation .............................. 281
   12.4 Properties of Aquatic Biomass ......................... 282
        12.4.1 Microalgae ..................................... 282
        12.4.2 Macroalgae ..................................... 284
        12.4.3 Plants ......................................... 286
   12.5 Growing Conditions .................................... 286
        12.5.1 Cultures of Microalgae ......................... 286
        12.5.2 Cultures of Macroalgae and Plants .............. 288
   12.6 Harvesting of Aquatic Biomass ......................... 288
        12.6.1 Technologies for Harvesting Microalgae ......... 289
        12.6.2 Technologies for Harvesting Macroalgae and
               Plants ......................................... 290
   12.7 Aquatic Biomass Composition ........................... 290
   12.8 Technologies for Biofuel Production ................... 291
        12.8.1 Production of Biodiesel ........................ 292
               12.8.1.1 Extraction of Biooil from Aquatic
                        Biomass ............................... 293
               12.8.1.2 Biooil Content of Aquatic Biomass ..... 293
               12.8.1.3 Quality of Biooil ..................... 295
               12.8.1.4 Conversion of Biooil into Biodiesel ... 296
        12.8.2 Production of Bioalcohol ....................... 298
        12.8.3 Production of Biogas ........................... 299
        12.8.4 Production of Biohydrogen ...................... 299
   12.9 Methodology for Assessment of the Value of Aquatic
        Biomass ............................................... 300
   12.10 Economics of the Production of Biofuels from
         Aquatic Biomass: Some Considerations ................. 301
   References ................................................. 302

13 Flameless Pulverized Coal Combustion ....................... 307
   Hannes Stadler and Reinhold Kneer
   13.1 Introduction .......................................... 307
        13.1.1 Development of Flameless Pulverized Coal
               Combustion ..................................... 308
   13.2 Theory ................................................ 309
        13.2.1 Aerodynamic Aspects ............................ 310
        13.2.2 Temperature Distribution ....................... 312
        13.2.3 Characterization of the Reaction Zone .......... 313
        13.2.4 Burnout ........................................ 314
        13.2.5 NOx Emissions .................................. 314
               13.2.5.1 Fuel-NO ............................... 314
               13.2.5.2 Thermal NO ............................ 315
               13.2.5.3 Reburning of NO ....................... 315
        13.2.6 Radiation ...................................... 315
        13.2.7 Definition of Flameless Combustion ............. 316
   13.3 Fields of Application of Flameless Coal Combustion .... 316
        13.3.1 Single Burner Systems .......................... 316
        13.3.2 Novel Furnace Designs for Flameless Coal
               Combustion ..................................... 317
        13.3.3 Flameless Coal Combustion in Reburning
               Furnaces ....................................... 318
        13.3.4 Flameless Coal Combustion in a O2/CO2
               Atmosphere ..................................... 318
   13.4 Summary ............................................... 319
   References ................................................. 319

14 Warm Discharges for Fuel Conversion ........................ 323
   Alexander Gutsol
   14.1 Introduction .......................................... 323
        14.1.1 Fuel Conversion ................................ 323
        14.1.2 Thermal, Cold, and Warm Plasma ................. 325
   14.2 Industrial Fuel Conversion Using Thermal Plasma ....... 327
   14.3 Warm Plasma for Plasma-Assisted Partial Oxidation
        (PAPO) ................................................ 331
        14.3.1 Low current (Gliding) Arcs and Glow
               Discharges ..................................... 334
        14.3.2 Microwave Discharges for PAPO and Plasma
               Catalysis ...................................... 339
   14.4 Warm Plasma for Other Fuel Conversion Processes ....... 342
   14.5 Outlook ............................................... 345
   14.6 Summary ............................................... 346
   References ................................................. 347

15 Metal-Halocarbon Pyrolant Combustion ....................... 355
   Ernst-Christian Koch
   15.1 Introduction .......................................... 355
   15.2 Characterization of Pyrolants ......................... 356
        15.2.1 Thermochemical Properties of Constituents ...... 356
               15.2.1.1 Polytetrafluoroethylene (PTFE) ........ 356
               15.2.1.2 Poly(Carbon Monofluoride) (PMF) ....... 358
               15.2.1.3 Vinylidene Fluoride Based
                        Copolymers ............................ 358
               15.2.1.4 Hexachloroethane (HC) and
                        Hexachlorobenzene (HCB) ............... 359
        15.2.2 Thermochemistry of Pyrolants ................... 359
   15.3 Ignition and Propagation .............................. 364
        15.3.1 Ignition ....................................... 364
        15.3.2 Propagation .................................... 368
   15.4 Combustion Phenomenology and Spectroscopy ............. 372
   15.5 Technical Applications ................................ 375
        15.5.1 SHS ............................................ 375
        15.5.2 IRCM - Flares .................................. 384
        15.5.3 Metal-Halocarbon Obscurants .................... 389
   15.6 Safety ................................................ 394
   15.7 Outlook ............................................... 396
   References ................................................. 397

16 Control of Acoustically Coupled Combustion Instabilities ... 403
   Sébastien Ducruix, Thierry Schuiier, Daniel Durox, and
   Sébastien Candel
   16.1 Introduction .......................................... 403
   16.2 Fundamentals of Acoustics for Reacting Flows .......... 404
        16.2.1 Acoustic Modes in Confined Environments ........ 407
        16.2.2 Acoustic-Flame Interactions .................... 409
        16.2.3 Acoustic Energy Balance ........................ 410
        16.2.4 Conclusions on Control Strategies .............. 411
   16.3 Passive Control Methods ............................... 412
        16.3.1 Sound Absorption by Acoustic Liners ............ 414
        16.3.2 Quarter Wave Tubes ............................. 416
        16.3.3 Helmholtz Resonators ........................... 417
               16.3.3.1 Helmholtz Resonator Equations ......... 417
               16.3.3.2 Frequency Response Curve .............. 419
   16.4 Flame Dynamic Control Methods ......................... 420
        16.4.1 Introduction ................................... 420
        16.4.2 Global Modification of the Flame Geometry ...... 421
   16.5 Active Control Methods ................................ 426
        16.5.1 Sensors В ...................................... 428
        16.5.2 Actuators A .................................... 428
        16.5.3 Active Control Algorithms V .................... 429
   16.6 Conclusions ........................................... 431
   References ................................................. 432

17 Combustion Synthesis ....................................... 439
   Stefania Specchia, Elisabetta Finocchio, Guido Busca, and
   Vito Specchia
   17.1 Introduction .......................................... 439
   17.2 Theory ................................................ 441
        17.2.1 Self-Propagating High Temperature Synthesis
               (SHS) .......................................... 441
        17.2.2 Solid-State Metathesis (SSM) ................... 442
        17.2.3 Flame Synthesis (FS) ........................... 442
        17.2.4 Solution Combustion Synthesis (SCS) of Oxide
               Materials using Redox Compounds and Mixtures ... 442
   17.3 Applications in Research .............................. 456
        17.3.1 In Situ SCS of Pd/LaMn03 Catalysts for
               Compressed NG (CNG) Vehicles Exhaust
               Treatment ...................................... 456
        17.3.2 In Situ SCS of Pd/CeO2-2Zr02 Catalysts for NG
               Combustion in Domestic Boilers ................. 459
        17.3.3 In Situ SCS of Pt/Al203-3A Zeolite Catalysts
               on Metallic Micro-Channel Plates for CO
               Preferential Oxidation in Fuel Processors ...... 464
   17.4 Outlook ............................................... 467
   17.5 Summary ............................................... 469
   References ................................................. 470

18 C02 Sequestration from Combustion Sources .................. 473
   Sadhana S. Rayalu, Pravin Jadhav, and Nitin Labhasetwar
   18.1 Introduction .......................................... 473
        18.1.1 Preamble ....................................... 473
        18.1.2 Sources of CO2 Emissions ....................... 475
        18.1.3 COz Inventory and Emission Projections ......... 475
               18.1.3.1 Global CO2 Emission Scenario .......... 475
               18.1.3.2 CO2 Emissions Scenario in India ....... 476
   18.2 Emissions from Combustion Sources ..................... 477
   18.3 Impacts of Increased CO2 Emissions (Global Warming,
        Climate Change, and Related Impacts) .................. 478
   18.4 CO2 Capture from Combustion Sources ................... 481
        18.4.1 CO2 Capture Methods ............................ 481
               18.4.1.1 Pre-Combustion Capture ................ 482
               18.4.1.2 Oxy-Fuel Combustion ................... 482
               18.4.1.3 Post Combustion CO2 Capture
                        Techniques ............................ 482
                        18.4.1.3.1 Chemical Absorption ........ 483
                        18.4.1.3.2 Physical Absorption ........ 484
                        18.4.1.3.3 Membrane Separation ........ 485
                        18.4.1.3.4 Cryogenic Separation ....... 485
                        18.4.1.3.5 Adsorption ................. 485
        18.4.2 CO2 Emissions from the Transport Sector ........ 489
   18.5 CO2 Sequestration ..................................... 490
        18.5.1 Importance of Carbon Sequestration ............. 490
        18.5.2 Geological Sequestration ....................... 492
        18.5.3 Mineral Carbonation ............................ 492
        18.5.3.1 Research Interests in Mineral Carbonation .... 495
        18.5.4 Injection into Active Oil Wells ................ 495
        18.5.5 CO2 Sequestration through Forests .............. 496
        18.5.6 Soil Sequestration ............................. 496
        18.5.7 Oceanic Sequestration .......................... 497
               18.5.7.1 Shallow Ocean Sequestration ........... 498
               18.5.7.2 Deep Ocean Sequestration .............. 498
        18.5.8 Industrial Use of CO2 .......................... 499
        18.5.9 Biological Conversion into Fuel ................ 499
   18.6 Enhanced Natural Sequestration Processes .............. 500
        18.6.1 Enhanced Humification .......................... 500
        18.6.2 Marine Sequestration ........................... 500
        18.6.3 Biomimetic Sequestration of CO2 ................ 500
        18.6.4 Biomineralization .............................. 501
        18.6.5 Biomass to Pyrogenic Carbon and Hydrogen ....... 502
   18.7 Niche Technologies for Carbon Sequestration ........... 502
        18.7.1 Biomass Management ............................. 503
        18.7.2 Catalytic and Photocatalytic Conversion of
               CO2 ............................................ 503
        18.7.3 Biocatalysts for CO2 Transformation ............ 504
   18.8 CCS Guidelines ........................................ 504
   18.9 Carbon Capture and Sequestration and Clean
        Development Mechanism ................................. 505
   18.10 Summary and R&D Opportunities ........................ 506
        18.10.1 Improved Mineral Carbonation .................. 506
        18.10.2 Enhancing the Natural Terrestrial
                Sequestration ................................. 506
        18.10.3 Sequestration in the Oceans ................... 506
        18.10.4 Sequestration in Geologic Formations .......... 507
        18.10.5 Advanced Bioengineering Processes ............. 508
        18.10.6 Advanced Nanotechnological and Chemical
                Approaches .................................... 508
   18.11 Conclusion ........................................... 509
   References ................................................. 510

19 Overview of Oxy-Combustion Technologies with Pure Oxygen
   and Chemical Looping Combustion ............................ 517
   Ben Anthony and Ali Hotei't
   19.1 Introduction .......................................... 517
   19.2 Chemical Looping Combustion ........................... 517
        19.2.1 CLC Theory and Applications .................... 518
        19.2.2 CLC Outlook .................................... 523
   19.3 Potential for Oxy-fuel in Fluidized Bed Combustion .... 524
        19.3.1 Brief Overview of FВС Technology
               Developments ................................... 524
        19.3.2 Advantages of Oxy-fuel Technology .............. 525
        19.3.3 Oxy-fuel FBC Pilot Plant Developments .......... 526
               19.3.3.1 Early Lessons from Pilot Plant
                        Units ................................. 526
        19.3.4 NOx Emissions from the CanmetEnergy Tests ...... 531
        19.3.5 Other Lessons from CanmetEnergy R&D on
               Oxy-fuel Firing ................................ 533
        19.3.6 Future Demonstration Projects .................. 535
   19.4 Conclusions ........................................... 537
   References ................................................. 537

20 Combustion of Pulverized Fuel in a CO2 Atmosphere .......... 543
   Dobrin Toporov, Make Förster, and Reinhold Kneer
   20.1 Introduction .......................................... 543
   20.2 Theoretical Principles of Burning Pulverized Fuel in
        a CO2-Rich Atmosphere ................................. 544
        20.2.1 Properties of CO2 .............................. 545
        20.2.2 CO2 Effects on Homogeneous Reaction Rates ...... 546
        20.2.3 CO2 Effects on Devolatilization and Particle
               Ignition ....................................... 546
        20.2.4 CO2 Effects on Heterogeneous Reaction Rates .... 547
               20.2.4.1 Boudoard Reaction ..................... 547
               20.2.4.2 Mathematical Description of
                        Gasification Reaction Rates ........... 548
   20.3 Current Research ...................................... 552
        20.3.1 Burner Design and Flame Stability .............. 552
        20.3.2 Emissions during Oxy-Combustion of Pulverized
               Fuel ........................................... 553
               20.3.2.1 NOx ................................... 553
               20.3.2.2 S02 ................................... 554
               20.3.2.3 Mercury ............................... 554
               20.3.2.4 Ash Composition ....................... 555
        20.3.3 Heat Transfer .................................. 555
               20.3.3.1 Radiative Properties of CO2 and H20 ... 556
               20.3.3.2 Dry and Wet Recycle and the Effect
                        on the Radiative Heat Transfer ........ 557
               20.3.3.3 Dry and Wet Recycle and the Effect
                        on the Convective Heat Transfer ....... 560
   20.4 Outlook ............................................... 561
   20.5 Summary ............................................... 561
   References ................................................. 562

21 Energy Conversion Processes with C02-Separation
   Not Reducing Efficiency .................................... 567
   Reinhard Leithner
   21.1 Introduction .......................................... 567
   21.2 C02-Emission Dependency on Fuel and Cycle
        Efficiency ............................................ 567
   21.3 C02-Separation Methods ................................ 569
        21.3.1 Post Combustion C02-Separation Processes
               Avoiding Efficiency Losses or Gaining Higher
               Efficiencies ................................... 570
        21.3.2 Pre-combustion CO2 Separation with High
               Efficiency ..................................... 572
        21.3.3 Energy Conversion Processes with Intrinsic
               Air Separation ................................. 575
               21.3.3.1 Metal Oxide Cycles - MOCs ............. 575
               21.3.3.2 Oxygen Ions Transporting Membrane
                        Cycles - OITMCs ....................... 576
   21.4 CO2 Sequestration by Carbonation ...................... 579
   21.5 Carbon Capture and Sequestration - Cost Estimations ... 580
   21.6 Outlook ............................................... 581
   21.7 Summary ............................................... 582
References .................................................... 582

Index ......................................................... 585
Glossary ...................................................... 607


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:22:40 2019. Размер: 39,774 bytes.
Посещение N 2103 c 04.10.2011