Handbook of combustion. Vol.1: Fundamentals and safety (Weinheim, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHandbook of combustion. Vol.1: Fundamentals and safety / ed. by M.Lackner, F.Winter, A.K.Agarwal: in 5 v. - Weinheim: Wiley-VCH, 2010. - lxii, 516 p.: ill. - Incl. bibl. ref. - Ind.: p.501-516. - ISBN 978-3-527-32449-1
 

Оглавление / Contents
 
Foreword .......................................................  V
Preface ...................................................... XXXV
About the Editors .......................................... XXXVII
List of Contributors .......................................... XII
Abbreviations ................................................. XLV
Synopsis Volume 1 .............................................. LI

1  Combustion Fundamentals ...................................... 1
   Mohammad Janbozorgi, Kian Eisazadeh Far, and Hameed
   Metghalchi
   1.1  Introduction ............................................ 1
   1.2  Combustion Thermodynamics ............................... 2
        1.2.1  Enthalpy of Reaction ............................. 2
        1.2.2  Flame Temperature ................................ 3
        1.2.3  Chemical Equilibrium ............................. 4
   1.3  Chemical Kinetics ....................................... 5
        1.3.1  Combustion Chemical Reactions .................... 5
        1.3.2  Kinetic Rate Equations ........................... 6
        1.3.3  Chemical Time Scales and Nonequilibrium
               Effects .......................................... 7
        1.3.4  Kinetics Simplification and Reduction ............ 8
               1.3.4.1  Rate-Controlled Constrained-
                        Equilibrium (RCCE) Method .............. 10
   1.4  Laminar Premixed Flames ................................ 12
        1.4.1  Governing Equations ............................. 14
        1.4.2  Experimental Approach ........................... 15
               1.4.2.1  Laminar Burning Speed Measurement
                        Techniques ............................. 15
                        1.4.2.1.1  Counter Flow Flame
                                   Methods ..................... 15
                        1.4.2.1.2  Outwardly Propagating
                                   Constant Pressure
                                   Spherical Flame Method ...... 16
                        1.4.2.1.3  Flat Flame Burner Method .... 17
                        1.4.2.1.4  Constant Volume Spherical
                                   Vessel Method ............... 17
                        1.4.2.1.5  Thermodynamic Model ......... 18
   1.5  Diffusion Flames ....................................... 20
   1.6  Conclusions ............................................ 22
   References .................................................. 23

2  Combustion Chemistry ........................................ 27
   Ravi Fernandes
   2.1  Introduction ........................................... 27
   2.2  Temperature Dependence of Rate Coefficients ............ 32
   2.3  Pressure Dependence of Rate Coefficients ............... 33
   2.4  Experimental Techniques in Elementary Gas-Phase
        Kinetics ............................................... 36
   2.5  Shock Tubes ............................................ 37
   2.6  Detection Techniques in Combustion Kinetics ............ 38
   2.7  Low-Temperature Chemistry and Auto-Ignition ............ 39
   2.8  Chemistry of Pollutant Formation in Combustion ......... 43
   2.9  Formation of Soot from Aliphatic Fuels ................. 44
   2.10 Formation of NOx ....................................... 46
        2.10.1 Thermal NO Route ................................ 46
        2.10.2 Prompt NO ....................................... 46
        2.10.3 The N2O Route to NOx ............................. 47
        2.10.4 Fuel Nitrogen Route to NO ....................... 47
   2.11 Outlook ................................................ 47
   2.12 Summary ................................................ 49
   References .................................................. 49

3  Combustion Physics .......................................... 53
   Alexey Burluka
   3.1  Introduction ........................................... 53
   3.2  Equilibrium Thermodynamics ............................. 54
        3.2.1  Extensive and Intensive Variables ............... 54
        3.2.2  The First Law of Thermodynamics ................. 54
        3.2.3  Equilibrium ..................................... 55
        3.2.4  The Second Law of Thermodynamics ................ 55
        3.2.5  Entropy ......................................... 56
        3.2.6  Thermochemical Equilibrium and the Second Law ... 56
        3.2.7  Equilibrium and the Gibbs Energy ................ 59
   3.3  Rate of Combustion ..................................... 60
        3.3.1  Conservation Laws ............................... 60
        3.3.2  Transport Equation for Concentrations of
               Species ......................................... 62
        3.3.3  Molecular Transport ............................. 62
        3.3.4  Propagation of Premixed Planar Laminar Flame:
               The Theory of Zeldovich, Semenov and Frank-
               Kamenetsky (ZSFK)
        3.3.5  Nonpremixed (Diffusion) Flame ................... 68
   3.4  Turbulent Combustion ................................... 71
        3.4.1  Averaging in a Turbulent Flow ................... 72
        3.4.2  Reference Scalar Field (RSF) Model .............. 75
   3.5  Conclusions ............................................ 81
   References .................................................. 82

4  Ignition: New Applications to Combustion Studies ............ 85
   Valeri I. Golovitchev and Fabian P. Kärrholm
   4.1  Introduction ........................................... 85
   4.2  The CFD Model Formulations ............................. 86
        4.2.1  The Model Formulation: Main Conservation Laws ... 87
        4.2.2  Turbulent Combustion Modeling ................... 87
        4.2.3  Finite-Rate Formulation for Reaction Model ...... 89
        4.2.4  Construction and Validation of Chemical
               Mechanisms ...................................... 90
   4.3  Ignition CFD Modeling Examples ......................... 95
        4.3.1  Simulation of Enhanced Turbulent Deflagration
               in the Closed Volume ............................ 95
        4.3.2  Modeling of the Flame Lift-Off for Liquid
               Sprays in the Constant Volume: Comparative
               Study of KIVA-3V and FOAM Codes ................. 97
        4.3.3  Modeling of Spark Ignition in SI Gasoline
               Engine Boosted by Direct Injection of
               Ethanol ........................................ 100
        4.3.4  Modeling of Solid Aluminum Ignition in Steam
               and Carbon Dioxide ............................. 102
   4.4  Conclusions ........................................... 104
   References ................................................. 105

5  Heat Transfer in Combustion Systems ........................ 107
   Jinliang Xu
   5.1  Introduction .......................................... 107
   5.2  The Three Basic Heat Transfer Modes ................... 109
   5.3  Conduction Heat Transfer .............................. 110
        5.3.1  The Basic Concept .............................. 110
        5.3.2  Conduction Heat Transfer in Combustion
               Systems ........................................ 112
        5.3.3  Reviews of Conduction Heat Transfer ............ 113
   5.4  Convection Heat Transfer .............................. 114
        5.4.1  The Basic Concept .............................. 114
               5.4.1.1  Boundary Layer ........................ 115
               5.4.1.2  Laminar and Turbulent Flows ........... 115
        5.4.2  Forced Convection Heat Transfer ................ 117
               5.4.2.1  Fully Developed Flow .................. 117
               5.4.2.2  Heat Transfer on Convection Duct
                        Walls ................................. 117
               5.4.2.3  Heat Transfer on Radiative Duct
                        Walls ................................. 118
               5.4.2.4  Thermally Developing Flow ............. 118
               5.4.2.5  Simultaneously Developing Flow ........ 118
        5.4.3  Natural Convection Heat Transfer ............... 119
        5.4.4  Convection Heat Transfer in Combustion
               Systems ........................................ 121
   5.5  Radiation Heat Transfer ............................... 124
        5.5.1  The Basic Concept of Radiation Heat Transfer ... 124
               5.5.1.1  Radiation Intensity ................... 124
               5.5.1.2  Blackbody Radiation ................... 125
               5.5.1.3  Nonblack Surfaces and Materials ....... 126
               5.5.1.4  Emissivity ............................ 126
               5.5.1.5  Absorptivity and Reflectivity ......... 126
        5.5.2  Radiation Heat Transfer in Combustion
               Systems ........................................ 126
               5.5.2.1  Nonluminous Gaseous Radiation ......... 128
               5.5.2.2  Luminous Radiation .................... 129
   5.6  Summary ............................................... 130
   References ................................................. 131

6  Thermochemistry ............................................ 135
   Elke Coos and Alexander Burcat
   6.1  Introduction .......................................... 135
   6.2  Thermochemical Properties ............................. 135
   6.3  First Law of Thermodynamics ........................... 138
   6.4  Second Law of Thermodynamics .......................... 138
   6.5  Third Law of Thermodynamics ........................... 139
   6.6  Consequences of Thermodynamic Laws to Chemical
        Kinetics .............................................. 140
   6.7  Adiabatic Combustion Temperature ...................... 141
   6.8  Measurement of Thermochemical Values .................. 142
   6.9  Where to Find Thermochemical Data? .................... 142
   6.10 How are the Data Represented? ......................... 144
        6.10.1 Extrapolation .................................. 145
   6.11 Statistical Thermodynamics: Calculation of
        Thermodynamic Functions from Molecule-Specific
        Properties (Partition Functions) ...................... 145
        6.11.1 Translation .................................... 147
        6.11.2 Vibrations ..................................... 147
        6.11.3 External Rotation .............................. 148
        6.11.4 Internal Rotation .............................. 148
        6.11.5 Electronic ..................................... 149
   6.12 Applications in Research and Industry ................. 150
   6.13 Outlook ............................................... 150
   References ................................................. 151

7  Combustion Kinetic Modeling ................................ 153
   Muhammed Tayyebjaved, Naseem Irfan, and Muhammad Asim
   Ibrahim
   7.1  Introduction .......................................... 153
   7.2  Combustion Modeling ................................... 154
        7.2.1  General Aspects ................................ 154
        7.2.2  History and Emergence of Combustion Modeling ... 155
        7.2.3  Combustion Model Components .................... 157
        7.2.4  Combustion Modeling Procedure .................. 158
        7.2.5  Inclusion of Chemical Kinetics ................. 158
   7.3  Kinetic Mechanisms .................................... 159
        7.3.1  Chemical Kinetic Mechanisms Studies ............ 159
        7.3.2  Mechanism Development and Reduction ............ 161
               7.3.2.1  Skeletal Mechanism Reduction .......... 162
               7.3.2.2  Time-Scale Mechanism Reduction ........ 162
               7.3.2.3  Diffusion Coefficient Reduction ....... 163
               7.3.2.4  Method of Computational Singular
                        Perturbation .......................... 163
   7.4  Coupling of Chemical Kinetics and Fluid Dynamics ...... 164
        7.4.1  Detailed Chemical Kinetics with Ideal Flow
               Fields ......................................... 164
        7.4.2  Reduced Chemical Kinetic Mechanisms with
               Actual Flow Fields ............................. 165
   7.5  Outlook and Summary ................................... 168
   References ................................................. 169

8  Modeling of Turbulent Combustion ........................... 175
   Bart Merci, Epaminondas Mastorakos, and Arnaud Мurа
   8.1  Introduction .......................................... 175
   8.2  Turbulence: Physics and Modeling ...................... 175
        8.2.1  Turbulent Scales ............................... 176
        8.2.2  Direct Numerical Simulation .................... 178
        8.2.3  Turbulence Modeling ............................ 179
               8.2.3.1  Turbulence Closure Problem ............ 179
               8.2.3.2  RANS Turbulence Models ................ 180
               8.2.3.3  Large-Eddy Simulation ................. 182
   8.3  Turbulent Premixed Combustion ......................... 183
        8.3.1  Turbulent Premixed Flame Structure ............. 183
        8.3.2  Turbulent Premixed Combustion Regime Diagram ... 184
        8.3.3  Progress Variable Formalism .................... 185
        8.3.4  Fast Chemistry Models .......................... 186
               8.3.4.1  The BML Model ......................... 186
               8.3.4.2  G-Equation Model ...................... 188
        8.3.5  Finite-Rate Chemistry .......................... 188
   8.4  Turbulent Nonpremixed Combustion ...................... 189
        8.4.1  Eddy Break-Up and Eddy Dissipation Concept ..... 189
        8.4.2  Mixture Fraction Concept ....................... 189
        8.4.3  Turbulent Nonpremixed Combustion Diagram ....... 190
        8.4.4  Turbulence Closure: PDF ........................ 191
        8.4.5  Fast Chemistry Models .......................... 192
               8.4.5.1  Flame Sheet Model ..................... 192
               8.4.5.2  Chemical Equilibrium .................. 192
               8.4.5.3  Laminar Flamelet Concept .............. 193
        8.4.6  Finite-Rate Chemistry .......................... 193
               8.4.6.1  Eddy Dissipation Concept .............. 193
               8.4.6.2  Transported PDF ....................... 194
               8.4.6.3  CMC ................................... 194
   8.5  Partially Premixed Combustion ......................... 195
        8.5.1  Background ..................................... 195
        8.5.2  Classification ................................. 196
        8.5.3  Modeling ....................................... 197
   8.6  Outlook ............................................... 198
   8.7  Summary ............................................... 198
   References ................................................. 199

9  Modeling and Simulation of Droplet and Spray Combustion .... 205
   Eva Cutheil
   9.1  Introduction .......................................... 205
   9.2  Droplet Evaporation and Combustion .................... 206
   9.3  Spray Evaporation and Combustion ...................... 208
        9.3.1  Euler-Euler Models ............................. 209
        9.3.2  Euler-Lagrange Models .......................... 210
        9.3.3  Turbulence Modeling ............................ 213
        9.3.4  Chemical Reactions in Spray Flows .............. 219
   9.4  Summary and Outlook ................................... 224
   References ................................................. 224

10 Conventional and Innovative Spray Generation for
   Combustion Applications .................................... 229
   Raffaele Ragucci and Brian Milton
   10.1 Introduction .......................................... 229
   10.2 Basic Concepts of Atomization ......................... 231
   10.3 Liquid Fuel Atomization Applications .................. 235
        10.3.1 Power Generation Systems ....................... 235
               10.3.1.1 Atomization of Conventional Liquid
                        Fuels in Steady Plants ................ 236
               10.3.1.2 Atomizers for Terrestrial Gas
                        Turbines .............................. 237
        10.3.2 Propulsion Systems ............................. 237
               10.3.2.1 Automotive Spark-Ignition (SI)
                        Engines ............................... 238
               10.3.2.2 Automotive (Car and Truck)
                        Compression-Ignition (CI) Engines ..... 239
               10.3.2.3 Aircraft Gas Turbines ................. 240
   10.4 Outlook on Innovative Atomization Techniques .......... 240
        10.4.1 Atomizing/Premixing Systems Based on Cross-
               Flow Injection ................................. 241
        10.4.2 Supersonic Atomization ......................... 244
               10.4.2.1 Towards Higher Pressures and
                        Supersonic Injection Velocities ....... 245
                        10.4.2.1.1 Supersonic Liquid Jets ..... 247
   10.5 Summary ............................................... 249
   References ................................................. 249

11 Light Emission from Flames ................................. 251
   Stephen A. Ciatti
   11.1 Introduction .......................................... 251
   11.2 Theory ................................................ 252
        11.2.1 Soot Incandescence or Soot Radiation ........... 252
        11.2.2 Electron-Shift Emission of Photons ............. 255
   11.3 Applications in Research .............................. 258
   11.4 Outlook ............................................... 262
   11.5 Summary ............................................... 263
   References ................................................. 263

12 Cool Flames ................................................ 265
   Dionysios I. Kolaitis and Maria A. Founti
   12.1 Introduction .......................................... 265
   12.2 Theory ................................................ 265
        12.2.1 Phenomenology .................................. 265
        12.2.2 Negative Temperature Coefficient (NTC) ......... 268
        12.2.3 Stabilized Cool Flames ......................... 269
        12.2.4 Chemical Kinetics .............................. 272
   12.3 Applications .......................................... 274
        12.3.1 Liquid Fuel Evaporation for Premixed
               Combustion ..................................... 275
        12.3.2 Liquid Fuel Reforming for Fuel Cell
               Applications ................................... 276
        12.3.3 Internal Combustion Engines .................... 278
               12.3.3.1 Knocking .............................. 278
               12.3.3.2 Low-Temperature Combustion and HCCI
                        Engines ............................... 278
               12.3.3.3 Lean Premixed Prevaporized
                        Combustion in Gas Turbines ............ 279
        12.3.4 Industrial Safety .............................. 279
   12.4 Numerical Modeling of Stabilized Cool Flame
        Reactors .............................................. 280
        12.4.1 One-Dimensional Chemical Kinetics Simulation
               of a Linear Flow SCF Reactor ................... 281
        12.4.2 Two-Dimensional Two-Phase CFD Simulation of
               a Linear Flow SCF Reactor ...................... 283
        12.4.3 Three-Dimensional Two-Phase CFD Simulation
               of a Recirculating Flow SCF Reactor ............ 287
   12.5 Outlook ............................................... 289
   12.6 Summary ............................................... 290
   References ................................................. 290

13 Industrial Steam Boilers ................................... 295
   Jorge Barroso, Félix Barreras, Javier Ballester, and
   Norberto Fueyo
   13.1 Introduction: Principles and Technology ............... 295
        13.1.1 Boiler Characteristics and Classification ...... 296
        13.1.2 Combustion Systems ............................. 298
               13.1.2.1 Bed Combustion Systems ................ 298
               13.1.2.2 Suspension Combustion Systems ......... 299
   13.2 Boiler Design and Diagnostics ......................... 301
        13.2.1 Conventional Boiler Design ..................... 301
        13.2.2 CFD Methods for Boiler Design .................. 306
               13.2.2.1 The Furnace ........................... 307
               13.2.2.2 Furnace Submodels ..................... 308
               13.2.2.3 Modeling of Other Furnace Types ....... 309
               13.2.2.4 The Convective Zone ................... 310
               13.2.2.5 Advanced In-Furnace Submodels ......... 311
        13.2.3 Combustion Diagnostics and Control ............. 312
               13.2.3.1 Flue Gas Analysis ..................... 313
               13.2.3.2 In-Furnace Diagnostics ................ 314
               13.2.3.3 State Identification and Control of
                        Combustion Systems .................... 316
        13.2.4 Ash Deposition and Corrosion ................... 317
   13.3 Technology Outlook .................................... 320
        13.3.1 Supercritical and Ultra-Supercritical
               Boilers ........................................ 320
        13.3.2 Low-NOx Combustion Systems ..................... 321
        13.3.3 Oxycombustion .................................. 322
   References ................................................. 323

14 Fuel Cells ................................................. 333
   Xiao-Zi Yuan and Haijiang Wang
   14.1 Introduction .......................................... 333
   14.2 Theory ................................................ 334
        14.2.1 Principles ..................................... 334
        14.2.2 Thermodynamics ................................. 336
               14.2.2.1 Heat of Reaction ...................... 336
               14.2.2.2 Energy Efficiency ..................... 336
        14.2.3 Reaction Kinetics .............................. 338
               14.2.3.1 The Butler-Volmer Equation ............ 338
               14.2.3.2 Polarization Curve .................... 340
               14.2.3.3 Voltage Losses ........................ 341
   14.3 Types of Fuel Cell .................................... 341
        14.3.1 PEMFCs ......................................... 342
               14.3.1.1 H2/Air PEMFCs ......................... 343
               14.3.1.2 Direct Liquid Fuel Cells (DLFCs) ...... 344
        14.3.2 Alkaline Fuel Cell (AFC) ....................... 345
        14.3.3 Phosphoric Acid Fuel Cell (PAFC) ............... 346
        14.3.4 Molten Carbonate Fuel Cell (MCFC) .............. 347
        14.3.5 Solid Oxide Fuel Cells (SOFCs) ................. 348
   14.4 Fuel Cell Applications ................................ 350
   14.5 Outlook ............................................... 352
   14.6 Summary ............................................... 353
   References ................................................. 354

15 Toxicology of Combustion Products .......................... 357
   Tarun Gupta and Avinash Kumar Aganval
   15.1 Introduction .......................................... 357
   15.2 Diesel Engine Emissions ............................... 360
        15.2.1 Chemical Composition ........................... 360
        15.2.2 Sampling ....................................... 362
        15.2.3 Health Effects ................................. 364
   15.3 Health Effects Associated with Other Combustion
        Sources ............................................... 366
   15.4 Outlook ............................................... 369
   15.5 Summary ............................................... 371
   References ................................................. 371

16 Explosion Safety ........................................... 377
   Gordon E. Andrews and Herodotos N. Phyiaktou
   16.1 Introduction .......................................... 377
   16.2 Explosion Stoichiometry ............................... 379
   16.3 Lean Flammability Limits .............................. 384
   16.4 Stoichiometry and Lean Flammability for Metal Dust
        Explosions ............................................ 388
   16.5 The influence of Temperature, Pressure, and Inerts
        on Lean Flammability Limits ........................... 390
   16.6 Ventilation Requirements for Explosion Safety ......... 392
   16.7 Applications of Lean Limit Stoichiometry to Two
        Explosion Risk Situations ............................. 394
   16.8 Liquid Fuel Tank Vapor Space Explosions and the
        Importance of the Flash Point ......................... 395
   16.9 Burning Velocity, Flame Speeds, Explosion-Induced
        Wind, and Closed-Vessel Pressure Rises ................ 398
   16.10 An Overview of Explosion-Protection Measures ......... 399
   16.11 Vent Design for Explosion Protection for Compact
        Vessels ............................................... 400
   16.12 Vent Design for Long Vessels with L/D > 2 ............ 407
   16.13 Conclusions .......................................... 409
   References ................................................. 411

17 Flame Retardants: Chemistry, Applications, and
   Environmental Impacts ...................................... 415
   Adrian Beard and David Angeler
   17.1 Introduction .......................................... 415
   17.2 Flame Retardant Groups by Active Element and
        Mechanism ............................................. 416
        17.2.1 Flame-Retardant Mechanisms ..................... 416
        17.2.2 Bromine and Chlorine ........................... 417
        17.2.3 Phosphorus ..................................... 420
        17.2.4 Nitrogen ....................................... 421
        17.2.5 Mineral Flame Retardants ....................... 422
        17.2.6 Nanomaterials: Layered Clay Minerals and
               Carbon Nanotubes ............................... 422
        17.2.7 Other Flame Retardants and Synergists:
               Borates, Zinc Compounds, and Expandable
               Graphite ....................................... 423
   17.3 Safety Regulations and Fire Test Standards ............ 423
   17.4 Applications in Industry .............................. 424
        17.4.1 Electric and Electronic Equipment .............. 425
        17.4.2 Construction ................................... 425
        17.4.3 Transport: Aeroplanes, Ships, Trains, and
               Road Vehicles .................................. 426
        174.4 Textiles ........................................ 428
   17.5 Environmental and Human Health Concerns ............... 428
        17.5.1 Brominated Flame Retardants .................... 429
        17.5.2 Wildland Fires and Retardants .................. 431
   17.6 Outlook ............................................... 436
   17.7 Summary ............................................... 436
   References ................................................. 437

18 Loss Prevention and Safety Promotion in Industry ........... 441
   Ales Bernatik
   18.1 The Problems of Major Accident Prevention:
        An Introduction ....................................... 441
        18.1.1 Accidents in the Past, and Legislation ......... 441
   18.2 Major Accident Risk Assessment ........................ 444
        18.2.1 General Principle of Major Accident Risk
               Assessment ..................................... 444
        18.2.2 A Brief Overview of Partial Methods of Risk
               Analysis ....................................... 445
               18.2.2.1 Selection Method ...................... 447
               18.2.2.2 Dow's Fire and Explosion Index ........ 448
               18.2.2.3 Dow's Chemical Exposure Index ......... 448
               18.2.2.4 Hazard and Operability Analysis
                        (HAZOP) ............................... 449
               18.2.2.5 Fault Tree Analysis (FTA) ............. 449
               18.2.2.6 Event Tree Analysis (ETA) ............. 449
        18.2.3 Scenario Probability Assessment ................ 450
               18.2.3.1 Direct Ignition ....................... 450
        18.2.4 Scenario Consequence Assessment ................ 450
        18.2.5 Risk Acceptability ............................. 451
               18.2.5.1 Probit Function ....................... 451
               18.2.5.2 Calculation and Result Presentation ... 453
   18.3 Major Accident Risk Management ........................ 455
        18.3.1 Possibilities of Reducing Major Accident
               Risks .......................................... 456
   18.4 Outlook ............................................... 457
   18.5 Summary ............................................... 457
   References ................................................. 458

19 Fire Safety ................................................ 459
   Michael A. Delichatsios
   19.1 Introduction .......................................... 459
   19.2 Classification of Data ................................ 460
   19.3 List of Data .......................................... 461
        19.3.1 Part A: Specification of the Designed Object ... 461
        19.3.2 Part B: Fire Physics and Chemistry ............. 463
               19.3.2.1 Fire Spread and Fire Growth, Heat
                        Fluxes, and Products of Combustion .... 464
               19.3.2.2 Dispersion of Fire Products ........... 464
        19.3.3 Part C: Human Behavior/Human Factors ........... 464
               19.3.3.1 Occupant Response ..................... 465
               19.3.3.2 Designed Object Preparedness for
                        Fire .................................. 465
        19.3.4 Part D: Risk Assessment ........................ 470
               19.3.4.1 Hazard Identification ................. 470
               19.3.4.2 Consequence Severity and Likelihood ... 470
               19.3.4.3 Control and Mitigation ................ 472
               19.3.4.4 Acceptance Criteria ................... 472
   19.4 Risk Analysis and Fire Protection Engineering Based
        on Software Agents .................................... 472
   19.5 Conclusions ........................................... 474
   References ................................................. 475

20 Smoke Spread in Buildings .................................. 477
   Lizhong Yang and Laixi Wu
   20.1 Introduction .......................................... 477
   20.2 Experimental Facilities ............................... 479
   20.3 The Spatial Distribution Rule of Toxic Gases in the
        Long Passage .......................................... 480
        20.3.1 Vertical Distribution Rule of Toxic Gases ...... 480
        20.3.2 Horizontal Distribution Rule of Toxic Gases .... 481
   20.4 The Spatial Distribution Rule of Toxic in the Remote
        Room .................................................. 484
        20.4.1 Influence of Opening С ......................... 484
        20.4.2 Influence of Opening D ......................... 485
        20.4.3 Influence of Opening E ......................... 488
   20.5 Simulation of Smoke Movement to the Non-Firesouce-
        Field ................................................. 488
        20.5.1 Structure of Building .......................... 489
        20.5.2 Numerical Simulation ........................... 489
               20.5.2.1 Software Package ...................... 489
               20.5.2.2 Simulation Arrangement ................ 491
        20.5.3 Result ......................................... 491
   20.6 Risk Analysis ......................................... 494
        20.6.1 Index of Toxicity .............................. 494
        20.6.2 The Application of It in the Risk Analysis of
               Fire ........................................... 495
   20.7 Conclusions ........................................... 497
   References ................................................. 498

Index ......................................................... 501


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:22:40 2019. Размер: 37,059 bytes.
Посещение N 1971 c 04.10.2011