Sarpeshkar R. Ultra low power bioelectronics: fundamentals, biomedical applications, and bio-inspired systems (Cambridge, UK; New York, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSarpeshkar R. Ultra low power bioelectronics: fundamentals, biomedical applications, and bio-inspired systems. - Cambridge; New York: Cambridge University Press, 2010. - xviii, 889 p.: ill. - Bibliogr.: p.861-878. - Ind.: p.879-889. - ISBN 978-0-521-85727-7
 

Оглавление / Contents
 
Acknowledgements .............................................. xvi

Section I Foundations ........................................... 1

1.  The big picture ............................................. 3
    1.1.  Importance of ultra-low-power electronics ............. 5
    1.2.  The power-efficient subthreshold regime of 
          transistor operation .................................. 7
    1.3.  Information, energy, and power ........................ 9
    1.4.  The optimum point for digitization in a mixed-signal
          system ............................................... 10
    1.5.  Examples of biomedical application contexts .......... 14
    1.6.  Principles for ultra-low-power design ................ 17
    1.7.  Ultra-low-power information processing in biology .... 18
    1.8.  Neuromorphic system example: the RF cochlea .......... 19
    1.9.  Cytomorphic electronics .............................. 22
    1.10. Energy sources ....................................... 23
    1.11. An overview of the book's chapters and 
          organization ......................................... 24
    1.12. Some final notes ..................................... 26

2.  Feedback systems: fundamentals, benefits, and root-locus
    analysis ................................................... 28
    2.1.  Feedback is universal ................................ 29
    2.2.  The basic linear feedback loop ....................... 32
    2.3.  Connections between feedback loops and circuits ...... 35
    2.4.  The seven benefits of feedback ....................... 36
    2.5.  Root-locus techniques ................................ 44
    2.6.  Eight root-locus rules ............................... 46
    2.7.  Example of a root-locus plot ......................... 53
    2.8.  The zeros of a closed-loop system .................... 55
    2.9.  Farewell to feedback systems ......................... 55

3.  MOS device physics: general treatment ...................... 57
    3.1.  Intuitive description of MOS transistor operation .... 60
    3.2.  Intuitive model of MOS transistor operation .......... 63
    3.3.  Intuitive energy viewpoint for MOS transistor 
          operation ............................................ 65
    3.4.  The MOS capacitor (MOSCAP) ........................... 68
    3.5.  Quantitative discussion of the MOSCAP ................ 71
    3.6.  Determining (Q1 + Qdep) in a MOSCAP for a given
          ΨS ................................................... 73
    3.7.  Equating the gate charge and bulk charge ............. 76
    3.8.  Quantitative discussion of the MOSFET ................ 79
    3.9.  Summary of physical insights ......................... 82

4.  MOS device physics: practical treatment .................... 84
    4.1.  The к approximation .................................. 85
    4.2.  Charge-based current models with the к 
          approximation ........................................ 92
    4.3.  Derivation of current in weak inversion .............. 93
    4.4.  Derivation of current in strong inversion ............ 95
    4.5.  Source-referenced model for strong inversion ......... 97
    4.6.  Moderate inversion .................................. 101

5.  MOS device physics: small-signal operation ................ 103
    5.1.  Weak-inversion small-signal models .................. 104
    5.2.  Strong-inversion small-signal models ................ 108
    5.3.  Small-signal capacitance models in strong
          inversion ........................................... 113
    5.4.  Extrinsic or parasitic capacitances ................. 120
    5.5.  Small-signal capacitance models in weak inversion ... 122
    5.6.  The transit time .................................... 123
    5.7.  The'beta'of an MOS transistor ....................... 125

6.  Deep.  submicron effects in MOS transistors ............... 129
    6.1.  The dimensionless EKV model ......................... 130
    6.2.  Velocity saturation ................................. 133
    6.3.  Drain induced barrier lowering (DIBL) ............... 140
    6.4.  Vertical-field effects .............................. 143
    6.5.  Effect on the intuitive model ....................... 145
    6.6.  High-frequency transistor models .................... 146
    6.7.  Ballistic transport ................................. 147
    6.8.  Transport in nanoscale MOSFETs ...................... 149
    6.9.  Tunneling ........................................... 151
    6.10. Scaling of transistors in the future ................ 152

7.  Noise in devices .......................................... 155
    7.1.  The mathematics of noise ............................ 155
    7.2.  Noise in subthreshold MOS transistors ............... 161
    7.3.  Noise in resistors .................................. 165
    7.4.  Unity between thermal noise and shot noise .......... 167
    7.5.  Noise in above-threshold MOS transistors ............ 168
    7.6.  Input-referred gate noise ........................... 169
    7.7.  l/ƒ or flicker noise in MOS transistors ............. 170
    7.8.  Some notes on 1/ƒ  noise ............................ 173
    7.9.  Thermal noise in short-channel devices .............. 176
    7.10. Thermal noise in moderate inversion ................. 179
    7.11. Induced gate noise .................................. 181
    7.12. Some caveats about noise ............................ 182

8.  Noise in electrical and non-electrical circuits ........... 184
    8.1.  Noise in an RC lowpass-filter circuit ............... 185
    8.2.  A subthreshold photoreceptor circuit ................ 187
    8.3.  The equipartition theorem ........................... 190
    8.4.  Noise in a subthreshold transconductance 
          amplifier ........................................... 193
    8.5.  Noise in general circuits ........................... 200
    8.6.  An ultra-low-noise MEMS capacitance sensor .......... 201

9.  Feedback systems .......................................... 212
    9.1.  The Nyquist criterion for stability ................. 212
    9.2.  Nyquist-based criteria for robustness: Gain margin
          and phase margin .................................... 216
    9.3.  Compensation techniques ............................. 219
    9.4.  The closed-loop two-pole τ-and-Q rules for
          feedback systems .................................... 228
    9.5.  Conditional stability ............................... 229
    9.6.  Describing-function analysis of nonlinear feedback
          systems ............................................. 231
    9.7.  Positive feedback ................................... 232
    9.8.  Feedback in small-signal circuits ................... 233
    9.9.  The 'fake label' circuit-analysis trick ............. 235
    9.10. A circuit example ................................... 235

10. Return-ratio analysis ..................................... 240
    10.1. Return ratio for a dependent generator .............. 241
    10.2. Return ratio for a passive impedance ................ 243
    10.3. Transfer function modification with the return
          ratio ............................................... 244
    10.4. Robustness analysis with the return ratio ........... 249
    10.5. Examples of return-ratio analysis ................... 250
    10.6. Blackman's impedance formula ........................ 256
    10.7. Driving-point transistor impedances with 
          Blackman's formula .................................. 258
    10.8. Middlebrook's extra-element theorem ................. 261
    10.9. Thevenin's theorem as a special case of return-
          ratio analysis ...................................... 264
    10.10.Two final examples of return-ratio analysis ......... 265
    10.11.Summary of key results .............................. 270

Section II Low-power analog and biomedical circuits ........... 273

11. Low-power transimpedance amplifiers and photoreceptors .... 275
    11.1. Transimpedance amplifiers ........................... 275
    11.2. Phototransduction in silicon ........................ 278
    11.3. A transimpedance-amplifier-based photoreceptor ...... 283
    11.4. Feedback analysis of photoreceptor .................. 286
    11.5. Noise analysis of photoreceptor ..................... 292
    11.6. The adaptation resistor RA .......................... 294
    11.7. Experimental measurements of the photoreceptor ...... 296
    11.8. Adaptive biasing of IA for energy efficiency ........ 297
    11.9. Zeros in the feedback path .......................... 298

12. Low-power transconductance amplifiers and scaling laws
    for power in analog circuits .............................. 301
    12.1. A simple ordinary transconductance amplifier 
          (OTA) ............................................... 302
    12.2. A low-power wide-linear-range transconductance 
          amplifier: the big picture .......................... 303
    12.3. WLR small-signal and linear-range analysis .......... 305
    12.4. WLR dc characteristics .............................. 310
    12.5. Dynamic characteristics of the WLR .................. 317
    12.6. Noise analysis ...................................... 317
    12.7. Distortion analysis ................................. 322
    12.8. Signal-to-noise ratio and power analysis ............ 323
    12.9. Scaling laws for power in analog circuits ........... 325
    12.10.Low-voltage transconductance amplifiers and low-
          voltage analog design ............................... 326
    12.11.Robust operation of subthreshold circuits ........... 329

13. Low-power filters and resonators .......................... 330
    13.1. Gm-С filter synthesis ............................... 331
    13.2. Gyrators ............................................ 333
    13.3. Introduction to second-order systems ................ 334
    13.4. Synthesis of a second-order Gm-C filter ............. 337
    13.5. Analysis of a second-order Gm-C filter .............. 339
    13.6. Synthesis and analysis of an alternative Gm-C 
          filter .............................................. 342
    13.7. Higher-order Gm-C filter design ..................... 347
    13.8. A-s2-plane geometry for analyzing the frequency
          response of linear systems .......................... 347

14. Low-power current-mode circuits ........................... 354
    14.1. Voltage versus current .............................. 355
    14.2. Static translinear circuits ......................... 356
    14.3. Dynamic translinear lowpass filters ................. 359
    14.4. Dynamic translinear integrators and high-order
          filters ............................................. 365
    14.5. Biasing of current-mode filters ..................... 367
    14.6. Noise, SNR, and dynamic range of log-domain
          filters ............................................. 370
    14.7. Log-domain vs. Gm-C filters ......................... 372
    14.8. Winner-take-all circuits ............................ 373
    14.9. Large-signal operation of the winner-take-all 
          circuit ............................................. 379
    14.10.Distributed-feedback circuits ....................... 380

15. Ultra-low-power and neuron-inspired analog-to-digital
    conversion for biomedical systems ......................... 385
    15.1. Review of ADC topologies ............................ 389
    15.2. A neuron-inspired ADC for biomedical applications ... 395
    15.3. Computational ADCs and time-to-digital ADCs ......... 408
    15.4. A time-based ΣΔ ADC ................................. 410
    15.5. Pipelined ADCs with comparators ..................... 411
    15.6. Adiabatic charging and energy-efficient 
          comparators in ADCs ................................. 412
    15.7. Digital correction of analog errors ................. 415
    15.8. Neurons and ADCs .................................... 416

Section III Low-power RF and energy-harvesting circuits
            for biomedical systems ............................ 419

16. Wireless inductive power links for medical implants ....... 421
    16.1. Theory of linear inductive links .................... 422
    16.2. Experimental system design .......................... 441
    16.3. Experimental measurements ........................... 448

17. Energy-harvesting RF antenna power links .................. 454
    17.1. Intuitive understanding of Maxwell's equations ...... 455
    17.2. The non-lossy, one-dimensional transmission line .... 456
    17.3. The impedance of free space ......................... 459
    17.4. Thevenin-equivalent circuit models of antennas ...... 459
    17.5. Near-field coupling ................................. 463
    17.6. Far-field coupling: the 'monopole' antenna .......... 463
    17.7. Far-field coupling: basics of dipole antennas ....... 465
    17.8. Directional radiation and antenna gain .............. 467
    17.9. Derivation of far-field transfer impedance or Z12 ... 469
    17.10.Impedance matching: the Bode-Fano criterion ......... 471
    17.11.Making the antenna and the load part of the 
          matching network .................................... 474
    17.12.Rectifier basics .................................... 477
    17.13.Rectifier analysis and optimization ................. 481
    17.14.Output voltage ripple in rectifiers ................. 482
    17.15.Latchup in CMOS rectifiers .......................... 483
    17.16.Rectifier modeling .................................. 483
    17.17.Experimental measurements ........................... 486
    17.18.Summary ............................................. 488

18. Low-power RF telemetry in biomedical implants ............. 489
    18.1. Impedance modulation in coupled parallel 
          resonators .......................................... 493
    18.2. Impedance-modulation transceiver .................... 495
    18.3. Pulse-width modulation receiver ..................... 503
    18.4. Dynamic effects in impedance modulation ............. 505
    18.5. Experimental results for a complete transceiver ..... 508
    18.6. Energy efficiency of the uplink and downlink ........ 511
    18.7. Scaling laws for power consumption in impedance-
          modulation links .................................... 511
    18.8. The energy per bit in impedance-modulation links .... 518
    18.9. Incoherent versus coherent RF receivers ............. 522
    18.10.Radiated emissions and FCC regulations .............. 523
    18.11.Seven considerations in choosing a carrier 
          frequency ........................................... 524
    18.12.RF antenna links for implants ....................... 525
    18.13.The skin depth of biological tissue ................. 525

Section IV Biomedical electronic systems ...................... 529

19. Ultra-low-power implantable medical electronics ........... 531
    19.1. Cochlear implants or bionic ears .................... 534
    19.2. An ultra-low-power programmable analog bionic ear
          processor ........................................... 537
    19.3. Low-power electrode stimulation ..................... 558
    19.4. Highly miniature electrode-stimulation circuits ..... 562
    19.5. Brain-machine interfaces for the blind .............. 565
    19.6. Brain-machine interfaces for paralysis, speech,
          and other disorders ................................. 572
    19.7. Summary ............................................. 575

20. Ultra-low-power noninvasive medical electronics ........... 579
    20.1. Analog integrated-circuit switched-capacitor model
          of the heart ........................................ 581
    20.2. The electrocardiogram ............................... 585
    20.3. A micropower electrocardiogram amplifier ............ 590
    20.4. Low-power pulse oximetry ............................ 595
    20.5. Battery-free tags for body sensor networks .......... 601
    20.6. Intra-body galvanic communication networks .......... 604
    20.7. Biomolecular sensing ................................ 605

Section V Principles for ultra-low-power analog and digital
          design .............................................. 615

21. Principles for ultra-low-power digital design ............. 617
    21.1. Subthreshold CMOS-inverter basics ................... 618
    21.2. Sizing and topologies for robust subthreshold 
          operation ........................................... 622
    21.3. Types of power dissipation in digital circuits ...... 623
    21.4. Energy efficiency in digital systems ................ 630
    21.5. Optimization of energy efficiency in the 
          subthreshold regime ................................. 632
    21.6. Optimization of energy efficiency in all regimes 
          of operation ........................................ 635
    21.7. Varying the power-supply voltage and threshold
          voltage ............................................. 641
    21.8. Gated clocks ........................................ 641
    21.9. Basics of adiabatic computing ....................... 642
    21.10.Adiabatic clocks .................................... 645
    21.11.Architectures and algorithms for improving energy 
          efficiency .......................................... 647

22. Principles for ultra-low-power analog and mixed-signal 
    design .................................................... 651
    22.1. Power consumption in analog and digital systems ..... 653
    22.2. The low-power hand .................................. 661
    22.3. The optimum point for digitization in a mixed-
          signal system ....................................... 663
    22.4. Common themes in low-power analog and digital 
          design .............................................. 669
    22.5. The Shannon limit for energy efficiency ............. 671
    22.6. Collective analog or hybrid computation ............. 674
    22.7. HSMs: general-purpose mixed-signal systems with 
          feedback ............................................ 679
    22.8. General principles for low-power mixed-signal 
          system design ....................................... 683
    22.9. The evolution of low-power design ................... 691
    22.10.Sensors and actuators ............................... 692

Section VI Bio-inspired systems ............................... 695

23. Neuromorphic electronics .................................. 697
    23.1. Transmission-line theory ............................ 705
    23.2. The cochlea: biology, motivations, theory, and RF-
          cochlea design ...................................... 706
    23.3. Integra ted-circuit unidirectional and
          bidirectional RF cochleas ........................... 721
    23.4. Audio cochleas and bio-inspired noise-robust 
          spectral analysis ................................... 725
    23.5. A bio-inspired analog vocal tract ................... 728
    23.6. Bio-inspired vision architectures ................... 733
    23.7. Hybrid analog-digital computation in the brain ...... 739
    23.8. Spike-based hybrid computers ........................ 741
    23.9. Collective analog or hybrid systems ................. 743
    23.10.Energy efficiency in neurobiological systems ........ 743
    23.11.Other work .......................................... 747
    23.12.Appendix: Power and computation in the brain, eye,
          ear, and body ....................................... 747

24. Cytomorphic electronics: cell-inspired electronics for 
    systems and synthetic biology ............................. 753
    24.1. Electronic analogies of chemical reactions .......... 755
    24.2. Log-domain current-mode models of chemical 
          reactions and protein-protein networks .............. 759
    24.3. Analog circuit models of gene-protein dynamics ...... 766
    24.4. Logic-like operations in gene-protein circuits ...... 769
    24.5. Stochastics in DNA-protein circuits ................. 772
    24.6. An example of a simple DNA-protein circuit .......... 774
    24.7. Circuits-and-feedback techniques for systems and 
          synthetic biology ................................... 776
    24.8. Hybrid analog-digital computation in cells and 
          neurons ............................................. 783

Section VII Energy sources .................................... 787

25. Batteries and electrochemistry ............................ 789
    25.1. Basic operation of a battery ........................ 789
    25.2. Example mechanism for battery operation ............. 791
    25.3. Chemical reaction kinetics and electrode current .... 793
    25.4. Mass-transport limitations .......................... 796
    25.5. Large-signal equivalent circuit of a battery ........ 799
    25.6. Battery voltage degradation with decreasing state
          of charge ........................................... 802
    25.7. Small-signal equivalent circuit of a battery and
          of electrodes ....................................... 806
    25.8. Operation of a lithium-ion battery .................. 812
    25.9. Operation of a zinc-air battery ..................... 815
    25.10.Basic operation of fuel cells ....................... 816
    25.11.Energy density, power density, and system cost ...... 817
26. Energy harvesting and the future of energy ................ 822
    26.1. Sources of energy ................................... 824
    26.2. Electrical circuit models of mechanical systems ..... 825
    26.3. Energy harvesting of body motion .................... 827
    26.4. Energy harvesting of body heat ...................... 831
    26.5. Power consumption of the world ...................... 835
    26.6. A circuit model for car power consumption ........... 836
    26.7. Electric cars versus gasoline cars .................. 841
    26.8. Cars versus animals ................................. 844
    26.9. Principles of low-power design in transportation .... 846
    26.10.Solar electricity generation ........................ 848
    26.11.Biofuels ............................................ 854
    26.12.Energy use and energy generation .................... 855

Epilogue ...................................................... 859
Bibliography .................................................. 860
Index ......................................................... 879


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:22:34 2019. Размер: 27,215 bytes.
Посещение N 1549 c 06.09.2011