Karniadakis G. Microflows and nanoflows: fundamentals and simulation (New York, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKarniadakis G. Microflows and nanoflows: fundamentals and simulation / G.Karniadakis, A.Beskok, N.Aluru; foreword by Chih-Ming Ho. - New York: Springer, 2005. - xxi, 817 p.: ill. - (Interdisciplinary applied mathematics; Vol.29). - Bibliogr.: p.757-807. - Ind.: p.808-817. - ISBN-10 0387286764; ISBN-13 9780387286761
 

Оглавление / Contents
 
Foreword by Chih-Ming Ho ........................................ v
Preface ....................................................... vii
1  Basic Concepts and Technologies .............................. 1
   1.1  New Flow Regimes in Microsystems ........................ 1
   1.2  The Continuum Hypothesis ................................ 8
        1.2.1  Molecular Magnitudes ............................ 13
        1.2.2  Mixed Flow Regimes .............................. 18
        1.2.3  Experimental Evidence ........................... 19
   1.3  The Pioneers ........................................... 24
   1.4  Modeling of Microflows ................................. 30
   1.5  Modeling of Nanoflows .................................. 34
   1.6  Numerical Simulation at All Scales ..................... 37
   1.7  Full-System Simulation of Microsystems ................. 38
        1.7.1  Reduced-Order Modeling .......................... 40
        1.7.2  Coupled Circuit/Device Modeling ................. 41
2  Governing Equations and Slip Models ......................... 51
   2.1  The Basic Equations of Fluid Dynamics .................. 51
        2.1.1  Incompressible Flow ............................. 54
        2.1.2  Reduced Models .................................. 56
   2.2  Compressible Flow ...................................... 57
        2.2.1  First-Order Models .............................. 59
        2.2.2  The Role of the Accommodation Coefficients ...... 61
   2.3  High-Order Models ...................................... 66
        2.3.1  Derivation of High-Order Slip Models ............ 67
        2.3.2  General Slip Condition .......................... 70
        2.3.3  Comparison of Slip Models ....................... 74
3  Shear-Driven Flows .......................................... 79
   3.1  Couette Flow: Slip Flow Regime ......................... 79
   3.2  Couette Flow: Transition and Free-Molecular Flow
        Regimes ................................................ 83
        3.2.1  Velocity Model .................................. 83
        3.2.2  Shear Stress Model .............................. 86
   3.3  Oscillatory Couette Flow ............................... 90
        3.3.1  Quasi-Steady Flows .............................. 91
        3.3.2  Unsteady Flows .................................. 96
        3.3.3  Summary ........................................ 109
   3.4  Cavity Flow ........................................... 110
   3.5  Grooved Channel Flow .................................. 112
4  Pressure-Driven Flows ...................................... 117
   4.1  Slip Flow Regime ...................................... 117
        4.1.1  Isothermal Compressible Flows .................. 118
        4.1.2  Adiabatic Compressible Flows - Fanno Theory .... 126
        4.1.3  Validation of Slip Models with DSMC ............ 131
        4.1.4  Effects of Roughness ........................... 136
        4.1.5  Inlet Flows .................................... 137
   4.2  Transition and Free-Molecular Regimes ................. 140
        4.2.1  Burnett Equations .............................. 144
        4.2.2  A Unified Flow Model ........................... 146
        4.2.3  Summary ........................................ 166
5  Thermal Effects in Microscales ............................. 167
   5.1  Thermal Creep (Transpiration) ......................... 167
        5.1.1  Simulation Results ............................. 169
        5.1.2  A Thermal Creep Experiment ..................... 173
        5.1.3  Knudsen Compressors ............................ 174
   5.2  Other Temperature-Induced Flows ....................... 175
   5.3  Heat Conduction and the Ghost Effect .................. 177
   5.4  Heat Transfer in Poiseuille Microflows ................ 179
        5.4.1  Pressure-Driven Flows .......................... 179
        5.4.2  Force-Driven Flows ............................. 186
   5.5  Heat Transfer in Couette Microflows ................... 188
6  Prototype Applications of Gas Flows ........................ 195
   6.1  Gas Damping and Dynamic Response of Microsystems ...... 196
        6.1.1  Reynolds Equation .............................. 199
        6.1.2  Squeezed Film Effects in Accelerometers ........ 210
   6.2  Separated Internal Flows .............................. 214
   6.3  Separated External Flows .............................. 221
   6.4  Flow Past a Sphere: Stokes Flow Regime ................ 224
        6.4.1  External Flow .................................. 224
        6.4.2  Sphere-in-a-Pipe ............................... 225
   6.5  Microfilters .......................................... 227
        6.5.1  Drag Force Characteristics ..................... 232
        6.5.2  Viscous Heating Characteristics ................ 234
        6.5.3  Short Channels and Filters ..................... 234
        6.5.4  Summary ........................................ 239
   6.6  Micropropulsion and Micronozzle Flows ................. 239
        6.6.1  Micropropulsion Analysis ....................... 240
        6.6.2  Rarefaction and Other Effects .................. 245
7  Electrokinetic Flows ....................................... 255
   7.1  Electrokinetic Effects ................................ 256
   7.2  The Electric Double Layer (EDL) ....................... 258
        7.2.1  Near-Wall Potential Distribution ............... 261
   7.3  Governing Equations ................................... 263
   7.4  Electroosmotic Flows .................................. 266
        7.4.1  Channel Flows .................................. 266
        7.4.2  Time-Periodic and AC Flows ..................... 272
        7.4.3  EDL/Bulk Flow Interface Velocity Matching
               Condition ...................................... 279
        7.4.4  Slip Condition ................................. 280
        7.4.5  A Model for Wall Drag Force .................... 281
        7.4.6  Joule Heating .................................. 282
        7.4.7  Applications ................................... 283
   7.5  Electrophoresis ....................................... 292
        7.5.1  Governing Equations ............................ 294
        7.5.2  Classification ................................. 295
        7.5.3  Taylor Dispersion .............................. 297
        7.5.4  Charged Particle in a Pipe ..................... 302
   7.6  Dielectrophoresis ..................................... 302
        7.6.1  Applications ................................... 304
8  Surface Tension-Driven Flows ............................... 311
   8.1  Basic Concepts ........................................ 312
   8.2  General Form of Young's Equation ...................... 317
   8.3  Governing Equations for Thin Films .................... 319
   8.4  Dynamics of Capillary Spreading ....................... 321
   8.5  Thermocapillary Pumping ............................... 324
   8.6  Electrocapillary ...................................... 328
        8.6.1  Generalized Young-Lippmann Equation ............ 333
        8.6.2  Optoelectrowetting ............................. 335
   8.7  Bubble Transport in Capillaries ....................... 337
9  Mixers and Chaotic Advection ............................... 343
   9.1  The Need for Mixing at Microscales .................... 344
   9.2  Chaotic Advection ..................................... 346
   9.3  Micromixers ........................................... 349
   9.4  Quantitative Characterization of Mixing ............... 357
10 Simple Fluids in Nanochannels .............................. 365
   10.1 Atomistic Simulation of Simple Fluids ................. 366
   10.2 Density Distribution .................................. 368
   10.3 Diffusion Transport.................................... 375
   10.4 Validity of the Navier-Stokes Equations ............... 381
   10.5 Boundary Conditions at Solid-Liquid Interfaces ........ 387
        10.5.1 Experimental and Computational Results ......... 387
        10.5.2 Conceptual Models of Slip ...................... 396
        10.5.3 Reynolds-Vinogradova Theory for Hydrophobic
               Surfaces ....................................... 401
11 Water in Nanochannels ...................................... 407
   11.1 Definitions and Models ................................ 407
        11.1.1  Atomistic Models .............................. 409
   11.2 Static Behavior ....................................... 416
        11.2.1 Density Distribution and Dipole Orientation .... 417
        11.2.2 Hydrogen Bonding ............................... 422
        11.2.3 Contact Angle .................................. 427
        11.2.4 Dielectric Constant ............................ 429
   11.3 Dynamic Behavior ...................................... 430
        11.3.1 Basic Concepts ................................. 430
        11.3.2 Diffusion Transport ............................ 435
        11.3.3 Filling and Emptying Kinetics .................. 437
12 Electroosmotic Flow in Nanochannels ........................ 447
   12.1 The Need for Atomistic Simulation ..................... 447
   12.2 Ion Concentrations .................................... 452
   12.2.1  Modified Poisson-Boltzmann Equation ................ 455
   12.3 Velocity Profiles ..................................... 457
   12.4 Slip Condition ........................................ 461
   12.5 Charge Inversion and Flow Reversal .................... 464
13 Functional Fluids and Functionalized Nanotubes ............. 471
   13.1 Colloidal Particles and Self-Assembly ................. 472
        13.1.1  Magnetorheological (MR) Fluids ................ 475
        13.1.2 Electrophoretic Deposition ..................... 486
   13.2 Electrolyte Transport Through Carbon Nanotubes ........ 490
        13.2.1 Carbon Nanotubes ............................... 491
        13.2.2 Ion Channels in Biological Membranes ........... 493
        13.2.3 Transport Through Unmodified Nanotubes ......... 495
        13.2.4 Transport Through Nanotubes with Charges at
               the Ends ....................................... 497
        13.2.5 Transport Through Functionalized Nanotubes ..... 498
        13.2.6 Anomalous Behavior ............................. 499
14 Numerical Methods for Continuum Simulation ................. 509
   14.1 Spectral Element Method: The μFlow Program ............ 510
        14.1.1 Incompressible Flows ........................... 514
        14.1.2 Compressible Flows ............................. 517
        14.1.3 Verification Example: Resolution of the
               Electric Double Layer .......................... 524
        14.1.4 Moving Domains ................................. 525
   14.2 Meshless Methods ...................................... 531
        14.2.1 Domain Simulation .............................. 532
        14.2.2 Boundary-Only Simulation ....................... 537
   14.3 Particulate Microflows ................................ 542
        14.3.1 Hydrodynamic Forces on Spheres ................. 543
        14.3.2 The Force Coupling Method (FCM) ................ 547
15 Multiscale Modeling of Gas Flows ........................... 559
   15.1 Direct Simulation Monte Carlo (DSMC) Method ........... 560
        15.1.1 Limitations and Errors in DSMC ................. 562
        15.1.2 DSMC for Unsteady Flows ........................ 567
        15.1.3 DSMC: Information-Preservation Method .......... 569
   15.2 DSM: Continuum Coupling ............................... 572
        15.2.1 The Schwarz Algorithm .......................... 575
        15.2.2 Interpolation Between Domains .................. 577
   15.3 Multiscale Analysis of Microfilters ................... 578
        15.3.1 Stokes/DSMC Coupling ........................... 579
        15.3.2 Navier-Stokes/DSMC Coupling .................... 584
   15.4 The Boltzmann Equation ................................ 588
        15.4.1 Classical Solutions ............................ 592
        15.4.2 Sone's Asymptotic Theory ....................... 596
        15.4.3 Numerical Solutions ............................ 606
        15.4.4 Nonisothermal Flows ............................ 611
   15.5 Lattice-Boltzmann Method (LBM) ........................ 611
        15.5.1 Boundary Conditions ............................ 618
        15.5.2 Comparison with Navier-Stokes Solutions ........ 618
        15.5.3 LBM Simulation of Microflows ................... 620
16 Multiscale Modeling of Liquid Flows ........................ 625
   16.1 Molecular Dynamics (MD) Method ........................ 626
        16.1.1 Intermolecular Potentials ...................... 628
        16.1.2 Calculation of the Potential Function .......... 634
        16.1.3 Thermostats .................................... 638
        16.1.4 Data Analysis .................................. 640
        16.1.5 Practical Guidelines ........................... 646
        16.1.6 MD Software .................................... 648
   16.2 MD-Continuum Coupling ................................. 648
   16.3 Embedding Multiscale Methods .......................... 656
        16.3.1 Application to the Poisson-Boltzmann
               Equation ....................................... 657
        16.3.2 Application to Navier-Stokes Equations ......... 659
   16.4 Dissipative Particle Dynamics (DPD) ................... 663
        16.4.1 Governing Equations ............................ 665
        16.4.2 Numerical Integration .......................... 668
        16.4.3 Boundary Conditions ............................ 673
17 Reduced-Order Modeling ..................................... 677
   17.1 Classification ........................................ 677
        17.1.1 Quasi-Static Reduced-Order Modeling ............ 678
        17.1.2 Dynamical Reduced-Order Modeling ............... 679
   17.2 Generalized Kirchhofhan Networks ...................... 680
        17.2.1 Equivalent Circuit Representation .............. 681
        17.2.2 Description Languages .......................... 689
   17.3 Black Box Models ...................................... 695
        17.3.1 Nonlinear Static Models ........................ 695
        17.3.2 Linear Dynamic Models .......................... 697
        17.3.3 Nonlinear Dynamic Models ....................... 701
   17.4 Galerkin Methods ...................................... 705
        17.4.1 Linear Galerkin Methods ........................ 705
        17.4.2 Nonlinear Galerkin Methods ..................... 717
18 Reduced-Order Simulation ................................... 721
   18.1 Circuit and Device Models for Lab-on-a-Chip Systems ... 721
        18.1.1 Electrical Model ............................... 723
        18.1.2 Fluidic Model .................................. 725
        18.1.3 Chemical Reactions: Device Models .............. 730
        18.1.4 Separation: Device Model ....................... 731
        18.1.5 Integration of the Models ...................... 733
        18.1.6 Examples ....................................... 733
   18.2 Macromodeling of Squeezed Film Damping ................ 745
        18.2.1 Equivalent Circuit Models ...................... 747
        18.2.2 Galerkin Methods ............................... 749
        18.2.3 Mixed-Level Simulation ......................... 751
        18.2.4 Black Box Models ............................... 752
   18.3 Compact Model for Electrowetting ...................... 753
   18.4 Software .............................................. 754

Bibliography .................................................. 757

Index ......................................................... 808


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:22:26 2019. Размер: 20,026 bytes.
Посещение N 1721 c 26.07.2011