Lappa M. Thermal convection: patterns, evolution and stability (Chichester, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLappa M. Thermal convection: patterns, evolution and stability. - Chichester: Wiley, 2010. - xx, 670 p.: ill. - Ref.: p.609-657. - Ind.: p.659-670. - ISBN 978-0-470-69994-2
 

Оглавление / Contents
 
Preface ........................................................ xv
Acknowledgements .............................................. xix

1  Equations, General Concepts and Methods of Analysis .......... 1
   1.1  Pattern Formation and Nonlinear Dynamics ................ 1
        1.1.1  Some Fundamental Concepts: Pattern, 
               Interrelation and Scale .......................... 2
        1.1.2  PDEs, Symmetry and Nonequilibrium Phenomena ...... 4
   1.2  The Navier-Stokes Equations ............................. 6
        1.2.1  A Satisfying Microscopic Derivation of the 
               Balance Equations ................................ 6
        1.2.2  A Statistical Mechanical Theory of Transport 
               Processes ........................................ 7
        1.2.3  The Continuity Equation .......................... 9
        1.2.4  The Momentum Equation ........................... 10
        1.2.5  The Total Energy Equation ....................... 11
        1.2.6  The Budget of Internal Energy ................... 13
        1.2.7  Newtonian Fluids ................................ 13
        1.2.8  Some Considerations About the Dynamics of 
               Vorticity ....................................... 15
        1.2.9  Incompressible Formulation of the Balance 
               Equations ....................................... 18
        1.2.10 Nondimensional Form of the Equations for 
               Thermal Problems ................................ 19
   1.3  Energy Equality and Dissipative Structures ............. 21
   1.4  Flow Stability, Bifurcations and Transition to Chaos ... 25
   1.5  Linear Stability Analysis: Principles and Methods ...... 27
        1.5.1  Conditional Stability and Infinitesimal
               Disturbances .................................... 27
        1.5.2  The Exponential Matrix and the Eigenvalue
               Problem ......................................... 28
        1.5.3  Linearization of the Navier-Stokes Equations .... 30
        1.5.4  A Simple Example: The Stability of a Parallel
               Flow with an Inflectional Velocity Profile ...... 32
        1.5.5  Weaknesses and Limits of the Linear Stability
               Approach ........................................ 35
   1.6  Energy Stability Theory ................................ 36
        1.6.1  A Global Budget for the Generalized
               Disturbance Energy .............................. 36
        1.6.2  The Extremum Problem ............................ 39
   1.7  Numerical Integration of the Navier-Stokes Equations ... 40
        1.7.1  Vorticity Methods ............................... 41
        1.7.2  Primitive Variables Methods ..................... 42
   1.8  Some Universal Properties of Chaotic States ............ 46
        1.8.1  Feigenbaum, Ruelle-Takens and Manneville-
               Pomeau Scenarios ................................ 46
        1.8.2  Phase Trajectories, Attractors and Strange
               Attractors ...................................... 47
        1.8.3  The Lorenz Model and the Butterfly Effect ....... 48
        1.8.4  A Possible Quantification of SIC: The Lyapunov
               Spectrum ........................................ 51
        1.8.5  The Mandelbrot Set: The Ubiquitous Connection
               Between Chaos and Fractals ...................... 53
   1.9  The Maxwell Equations .................................. 58

2  Classical Models, Characteristic Numbers and Scaling
   Arguments ................................................... 63
   2.1  Buoyancy Convection and the Boussinesq Model ........... 64
   2.2  Convection in Space .................................... 66
        2.2.1  A Definition of Microgravity .................... 66
        2.2.2  Experiments in Space ............................ 67
        2.2.3  Surface Tension-driven Flows .................... 68
        2.2.4  Acceleration Disturbances on Orbiting
               Platforms and Vibrational Flows ................. 68
   2.3  Marangoni Flow ......................................... 70
        2.3.1  The Genesis and Relevant Nondimensional
               Numbers ......................................... 71
        2.3.2  Microzone Facilities and Microscale
               Experimentation ................................. 75
        2.3.3  A Paradigm Model: The Liquid Bridge ............. 75
   2.4  Exact Solutions of the Navier-Stokes Equations for
        Thermal Problems ....................................... 78
        2.4.1  Thermogravitational Convection: The Hadley
               Flow ............................................ 80
        2.4.2  Marangoni Flow .................................. 80
        2.4.3  Hybrid States ................................... 83
        2.4.4  General Properties .............................. 83
        2.4.5  The Infinitely Long Liquid Bridge ............... 85
        2.4.6  Inclined Systems ................................ 86
   2.5  Conductive, Transition and Boundary-layer Regimes ...... 89

3  Examples of Thermal Fluid Convection and Pattern Formation
   in Nature and Technology .................................... 95
   3.1  Technological Processes: Small-scale Laboratory and
        Industrial Setups ...................................... 95
        3.1.1  Crystal Growth from the Melt: Typical
               Techniques ...................................... 96
        3.1.2  Detrimental Effects Induced by Convective
               Phenomena ...................................... 101
   3.2  Examples of Thermal Fluid Convection and Pattern
        Formation at the Mesoscale ............................ 103
   3.3  Planetary Structure and Dynamics: Convective
        Phenomena ............................................. 103
        3.3.1  Earth's 'Layered' Structure .................... 103
        3.3.2  Earth's Mantle Convection ...................... 104
        3.3.3  Plate Tectonics Theory ......................... 104
        3.3.4  Earth's Core Convection ........................ 106
        3.3.5  The Icy Galilean Satellites .................... 107
   3.4  Atmospheric and Oceanic Phenomena ..................... 108
        3.4.1  A Fundamental Model: The Hadley Circulation .... 108
        3.4.2  Mesoscale Shallow Cellular Convection:
               Collection of Clouds and Related Patterns ...... 110
        3.4.3  The Planetary Boundary Layer ................... 112
        3.4.4  Atmospheric Convection in Other Solar System
               Bodies ......................................... 116

4  Thermogravitational Convection: The Rayleigh-Bénard
   Problem .................................................... 119
   4.1  Nonconfined Fluid Layers and Ideal Straight Rolls ...... 119
        4.1.1  The Linearized Problem: Primary Convective
               Modes .......................................... 119
        4.1.2  Systems Heated from Above: Internal Gravity
               Waves .......................................... 122
   4.2  The Busse Balloon ..................................... 124
        4.2.1  Toroidal-Poloidal Decomposition ................ 125
        4.2.2  The Zoo of Secondary Modes ..................... 127
   4.3  Some Considerations About the Role of Dislocation
        Dynamics .............................................. 133
   4.4  Tertiary and Quaternary Modes of Convection ........... 135
   4.5  Spoke Pattern Convection .............................. 138
   4.6  Spiral Defect Chaos, Hexagons and Squares ............. 142
   4.7  Convection with Lateral Walls ......................... 149
   4.8  Two-dimensional Models ................................ 151
        4.8.1  Distinct Modes of Convection and Possible
               Symmetries ..................................... 151
        4.8.2  Higher Modes of Convection and Oscillatory
               Regimes ........................................ 155
   4.9  Three-dimensional Parallelepipedic Enclosures:
        Classification of Solutions and Possible Symmetries ... 157
        4.9.1  The Cubical Box ................................ 160
        4.9.2  The Onset of Time Dependence ................... 161
   4.10 The Circular Cylindrical Problem ...................... 165
        4.10.1 Moderate Aspect Ratios: Azimuthal Structure
               and Effect of Lateral Boundary Conditions ...... 165
        4.10.2 Small Aspect Ratios: Targets and PanAm
               Textures ....................................... 170
   4.11 Spirals: Genesis, Properties and Dynamics ............. 173
        4.11.1 The Archimedean Spiral ......................... 175
        4.11.2 Spiral Wavenumber .............................. 175
        4.11.3 Multi-armed Spirals and Spiral Core
               Instability .................................... 176
   4.12 From Spirals to SDC: The Extensive Chaos Problem ...... 179
   4.13 Three-dimensional Convection in a Spherical Shell ..... 182
        4.13.1 Possible Patterns of Convection and Related
               Symmetries ..................................... 183
        4.13.2 The Heteroclinic Cycles ........................ 183
        4.13.3 The Highly Viscous Case ........................ 185
        4.13.4 The Geodynamo Problem .......................... 188

5  The Dynamics of Thermal Plumes and Related Regimes of
   Motion ..................................................... 195
   5.1  Introduction .......................................... 195
   5.2  Free Plume Regimes .................................... 196
        5.2.1  The Diffusive-Viscous Regime ................... 197
        5.2.2  The Viscous-Nondiffusive Regime ................ 198
        5.2.3  The Inviscid-Diffusive Regime .................. 198
        5.2.4  The Inviscid-Nondiffusive Regime ............... 200
        5.2.5  Sinuous Instabilities Created by Horizontal
               Shear .......................................... 200
        5.2.6  Geometric Constraints .......................... 201
   5.3  The Flywheel Mechanism: The 'Wind' of Turbulence ...... 202
        5.3.1  Upwelling and Downward Jets and Alternating
               Eruption of Thermal Plumes ..................... 203
        5.3.2  Geometric Effects .............................. 204
        5.3.3  The Origin of the Large-scale Circulation:
               The Childress and Villermaux Theories .......... 205
        5.3.4  The Role of Thermal Diffusion in Turbulent
               Rayleigh-Benard Convection ..................... 208
   5.4  Multiplume Configurations Originated from Discrete
        Sources of Buoyancy ................................... 208

6  Systems Heated from the Side: The Hadley Flow .............. 215
   6.1  The Infinite Horizontal Layer ......................... 215
        6.1.1  The Hadley Flow and its General Perturbing
               Mechanisms ..................................... 216
        6.1.2  Hydrodynamic Modes and Oscillatory
               Longitudinal Rolls ............................. 219
        6.1.3  The Rayleigh Mode .............................. 223
        6.1.4  Competition of Disturbances and Tertiary
               Modes of Convection ............................ 225
   6.2  Two-dimensional Horizontal Enclosures ................. 228
        6.2.1  Geometric Constraints and Multiplicity of
               Solutions ...................................... 228
        6.2.2  Instabilities Originating from Boundary
               Layers and Patterns with Internal Waves ........ 235
   6.3  The Infinite Vertical Layer: Cats-eye Patterns and
        Temperature Waves ..................................... 247
   6.4  Three-dimensional Parallelepipedic Enclosures ......... 253
   6.5  Cylindrical Geometries under Various Heating
        Conditions ............................................ 262

7  Thermogravitational Convection in Inclined Systems ......... 271
   7.1  Inclined Layer Convection ............................. 272
        7.1.1  The Codimension-two Point ...................... 273
        7.1.2  Tertiary and High-order Modes of Convection .... 275
   7.2  Inclined Side-heated Slots ............................ 279
        7.2.1  Stationary Longitudinal Long-wavelength
               Instability .................................... 281
        7.2.2  Stationary Transversal Instability ............. 282
        7.2.3  Oscillatory Transversal Long-wavelength
               Instability .................................... 284
        7.2.4  Stationary Longitudinal Short-wavelength
               Instability .................................... 284
        7.2.5  Oscillatory Longitudinal Instability ........... 284
        7.2.6  Interacting Longitudinal and Transversal
               Multicellular Modes ............................ 286

8  Thermovibrational Convection ............................... 289
   8.1  Equations and Relevant Parameters ..................... 289
   8.2  Fields Decomposition .................................. 290
   8.3  The TFD Distortions ................................... 291
   8.4  High Frequencies and the Thermovibrational Theory ..... 293
   8.5  States of Quasi-equilibrium and Related Stability ..... 294
        8.5.1  The Vibrational Hydrostatic Conditions ......... 294
        8.5.2  The Linear Stability Problem ................... 295
        8.5.3  Solutions for the Infinite Layer ............... 297
   8.6  Primary and Secondary Patterns of Symmetry ............ 299
   8.7  Medium and Low Frequencies: Possible Regimes and
        Flow Patterns ......................................... 303
        8.7.1  Synchronous, Subharmonic and Nonperiodic
               Response ....................................... 303
        8.7.2  Reduced Equations and Related Ranges of
               Validity ....................................... 305

9  Marangoni-Benard Convection ................................ 317
   9.1  Introduction .......................................... 317
   9.2  High Prandtl Number Liquids: Patterns with Hexagons,
        Squares and Triangles ................................. 320
   9.3  Liquid Metals: Inverted Hexagons and High-order
        Solutions ............................................. 325
   9.4  Effects of Lateral Confinement ........................ 326
        9.4.1  Circular Containers ............................ 328
        9.4.2  Rectangular Containers ......................... 331
   9.5  Temperature Gradient Inclination ...................... 334

10 Thermocapillary Convection ................................. 341
   10.1 Basic Features of Steady Marangoni Convection ......... 342
   10.2 Stationary Multicellular Flow and Hydrothermal
        Waves ................................................. 345
        10.2.1 Basic Velocity Profiles: The Linear and
               Return Flows ................................... 346
        10.2.2 Linear Stability Analysis ...................... 346
        10.2.3 Weakly Nonlinear Analysis ...................... 354
        10.2.4 Boundary Effects: 2D and 3D Numerical
               Studies ........................................ 359
   10.3 Annular Configurations ................................ 368
   10.4 The Liquid Bridge ..................................... 375
        10.4.1 Historical Perspective ......................... 375
        10.4.2 Liquid Metals and Semiconductor Melts .......... 378
        10.4.3 The First Bifurcation: Structure of the
               Secondary 3D Steady Flow ....................... 379
        10.4.4 Effect of Geometric Parameters ................. 381
        10.4.5 A Generalized Theory for the Azimuthal
               Wavenumber ..................................... 389
        10.4.6 The Second Bifurcation: Tertiary Modes of
               Convection ..................................... 390
        10.4.7 High Prandtl Number Liquids .................... 393
        10.4.8 Standing Waves and Travelling Waves ............ 399
        10.4.9 Symmetric and Asymmetric Oscillatory Modes of
               Convection ..................................... 407
        10.4.10 System Dynamic Evolution ...................... 412
        10.4.11 The Hydrothermal Mechanism in Liquid
               Bridges ........................................ 417
        10.4.12 Noncylindrical Liquid Bridges ................. 421
        10.4.13 The Intermediate Range of Prandtl Numbers ..... 423

11 Mixed Buoyancy-Marangoni Convection ........................ 427
   11.1 The Canonical Problem: The Infinite Horizontal
        Layer ................................................. 429
   11.2 Finite-sized Systems Filled with Liquid Metals ........ 436
   11.3 Typical Terrestrial Laboratory Experiments with
        Transparent Liquids ................................... 449
   11.4 The Rectangular Liquid Layer .......................... 450
        11.4.1 Waves and Multicellular Patterns ............... 450
        11.4.2 Tertiary Modes of Convection: OMC and HTW
               with Spatiotemporal Dislocations ............... 456
   11.5 Effects Originating from the Walls .................... 458
        11.5.1 Lateral Boundaries as a Permanent Stationary
               Disturbance .................................... 459
        11.5.2 Collision Phenomena of HTW and Wall-generated
               Steady Patterns ................................ 460
        11.5.3 Streaks Generated by a Lift-up Process and
               Instabilities of a Mechanical Nature ........... 464
   11.6 The Open Vertical Cavity .............................. 468
        11.6.1 Volume Driving Actions and Rising Thermal
               Plumes ......................................... 470
        11.6.2 Aiding Marangoni and Buoyant Flows ............. 470
        11.6.3 Counteracting Driving Forces and Separation
               Phenomena ...................................... 472
        11.6.4 Surface Driving Actions and Vertical
               Temperature Gradients .......................... 474
   11.7 The Annular Pool ...................................... 475
        11.7.1 Target-like Wave Patterns (HW2) ................ 476
        11.7.2 Waves with Spiral Pattern (HW1) ................ 478
        11.7.3 Stationary Radial Rolls ........................ 480
        11.7.4 Progression Towards Chaos and Fractal
               Behaviour ...................................... 483
        11.7.5 The Reverse Annular Configuration: Incoherent
               Spatial Dynamics ............................... 487
        11.7.6 Some Considerations About the Role of
               Curvature, Heating Direction and Gravity ....... 488
   11.8 The Liquid Bridge on the Ground ....................... 491
        11.8.1 Microscale Experiments ......................... 492
        11.8.2 Heating from Above or from Below ............... 499
        11.8.3 The Route to Aperiodicity ...................... 510

12 Hybrid Regimes with Vibrations ............................. 517
   12.1 RB Convection with Vertical Shaking ................... 519
   12.2 Complex Order, Quasi-periodic Crystals and
        Superlattices ......................................... 525
        12.2.1 Purely Harmonic Patterns ....................... 527
        12.2.2 Purely Subharmonic Patterns .................... 529
        12.2.3 Coexistence and Complex Order .................. 529
   12.3 RB Convection with Horizontal or Oblique Shaking ...... 533
   12.4 Laterally Heated Systems and Parametric Resonances .... 538
        12.4.1 The Infinite Horizontal Layer .................. 538
        12.4.2 Domains with Vertical Walls .................... 544
        12.4.3 The Infinite Vertical Layer .................... 548
        12.4.4 Inclined Systems ............................... 550
   12.5 Control of Thermogravitational Convection ............. 550
        12.5.1 Cell Orientation as a Means to Mitigate
               Convective Disturbances on Orbiting
               Platforms ...................................... 551
        12.5.2 Control of Convection Patterning and
               Intensity in Shallow Enclosures ................ 553
        12.5.3 Modulation of Thermal Boundary Conditions ...... 559
   12.6 Mixed Marangoni-Thermovibrational Convection .......... 561
        12.6.1 Basic Solutions ................................ 561
        12.6.2 Control of Convection Patterning and
               Intensity in Shallow Enclosures ................ 566
        12.6.3 Control of Hydrothermal Waves .................. 567
   12.7 Modulation of Marangoni-Benard Convection ............. 575

13 Flow Control by Magnetic Fields ............................ 581
   13.1 Static and Uniform Magnetic Fields .................... 582
        13.1.1 Physical Principles and Governing Equations .... 582
        13.1.2 Hartmann Boundary Layers ....................... 584
   13.2 Historical Developments and Current Status ............ 584
        13.2.1 Stabilization of Thermogravitational Flows ..... 584
        13.2.2 Stabilization of Surface Tension-driven
               Flows .......................................... 597
   13.3 Rotating Magnetic Fields .............................. 604
   13.4 Gradients of Magnetic Fields and Virtual
        Microgravity .......................................... 607

References .................................................... 609

Index ......................................................... 659


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:22:04 2019. Размер: 25,708 bytes.
Посещение N 1957 c 12.04.2011