Ling G.N. Life at the cell and below-cell level: the hidden history of a fundamental revolution in biology (New York, 2001). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLing G.N. Life at the cell and below-cell level: the hidden history of a fundamental revolution in biology. - New York: Pacific Press, 2001. - x, 373 p.: ill. - Ref.: p.334-350. - Auth. ind.: p.351-355. - Sub. ind.: p.356-365. - ISBN 0-9707322-0-1
 

Оглавление / Contents
 
Preface ......................................................... i
Answers to Readers's Queries (Read First!) ................... viii
Introduction .................................................... 1

1  How It Began on the Wrong Foot—Perhaps Inescapably ........... 5
2  The Same Mistake Repeated in Cell Physiology ................. 8
3  How the Membrane Theory Began ............................... 10
4  Evidence for a Cell Membrane Covering All Living Cells ...... 14
   4.1  From studies of cel-volume changes and solute 
        permeability ........................................... 14
        (1)  A semipermeable diffusion barrier at the cell
             surface ........................................... 14
        (2)  Plasmolysis ....................................... 14
        (3)  Transient and sustained volume changes ............ 16
        (4)  Membrane regeneration ............................. 18
   4.2  From Bernstein's membrane theory of cellular electric
        potentials ............................................. 21
   4.3  From Donnan's theory of ionic distribution and
        membrane potential ..................................... 23
5  Evidence for the Cell Content as a Dilute Solution .......... 26
   5.1  Early evidence for free cell water ..................... 26
   5.2  Early evidence for free cell K+ ........................ 26
6  Colloid, the Brain Child of a Chemist ....................... 29
   6.1  Colloid, the namesake of gelatin and a cogent model
        for protoplasm ......................................... 29
   6.2  Coacervates ............................................ 31
        (1)  History ........................................... 31
        (2)  Bungenberg de Jong's two views .................... 31
        (3)  Coacervate and protoplasm ......................... 33
        (4)  Coacervate and the living cell .................... 34
7  Legacy of the Nearly Forgotten Pioneers ..................... 35
8  Aftermath of the Rout ....................................... 40
   8.1  The tiny Hungarian enclave under E. Ernst .............. 40
   8.2  The Leningrad school led by Nasonov and Troshin ........ 41
9  Troshin's Sorption Theory for Solute Distribution ........... 43
10 Ling's Fixed Charge Hypothesis .............................. 47
   10.1 A theory of selective accumulation of K+ over Na+ ...... 48
        (1)  Enhancement of counter-ion (or neutral 
             molecules) association with site fixation ......... 48
        (2)  The salt-linkage hypothesis and a critical role 
             for ATP ........................................... 50
        (3)  The 1952 electrostatic model for the selective 
             accumulation of K+ over Na+ ....................... 50
   10.2 Experimental verifications of the LFCH (and parts
        of AIH) ................................................ 52
        (1)  Cytoplasm rather than the cell membrane as the
             seat of selective K+ accumulation (and Na+
             exclusion) ........................................ 53
        (2)  Confirming the salt-linkage hypothesis for past
             failures to demonstrate selective adsorption 
             of K+ on isolated proteins ........................ 55
        (3)  The great majority of cell K+ is not free ......... 56
             (3.1) Mobility of intracellular K+ ................ 56
             (3.2)  From X-ray absorption-edge fine 
                    structure .................................. 60
             (3.3)  K+ activity measured in living cells with
                    a K+-specific ion-sensitive
                    microelectrode ............................. 60
        (4)  Cell K+ adsorbed on β- and γ-carboxyl groups 
             one-on-one and in close contact ................... 62
             (4.1)  K+ adsorption follows the characteristics
                    of a Langmuir adsorption isotherm .......... 62
             (4.2)  K+ adsorption on β- and γ-carboxyl
                    groups ....................................  64
        (5)  In striated muscle cells, the K+-adsorbing β- 
             and γ-carboxyl groups belong mostly to myosin ..... 66
        (6)  Quantitative relationship between adsorbed K+
             and ATP ........................................... 69
        (7)  A summary of Section 10.2 ......................... 71
11 The Polarized Multilayer Theory of Cell Water ............... 74
   11.1 Background ............................................. 74
   11.2 Polarized multilayer theory of cell water and its
        world-wide confirmation ................................ 75
   11.3 Theoretical and practical extensions of the PM theory
        (and confirmations) .................................... 81
        (1)  The invention of MRI .............................. 81
        (2)  What makes gelatin unique leads to a new 
             definition of colloid ............................. 84
        (3)  A new hypothesis of coacervate based on the PM 
             theory ............................................ 85
        (4)  A quantitative theory of solute distribution 
             (exclusion) in cell water and model system and 
             its experimental verification ..................... 90
        (5)  A possible cause for the lower q-value for Na+
             (salts) in cell water than in extrovert models .... 99
        (6)  Answer to A.V. Hill's once-widely-accepted proof
             of free cell water and of free cell K+ ........... 100
        (7)  Osmotic cell volume control ...................... 101
             (7.1)  What reduces the intracellular water 
                    activity to match that of a Ringer's
                    solution? ................................. 102
             (7.2)  Reversible osmotic shrinkage of 
                    solutions of an extrovert model in 
                    dialysis sacs immersed in concentrated 
                    solutions of substances to which the sac
                    membrane is fully permeable ............... 105
12 The Membrane-Pump Theory and Grave Contradictions .......... 109
13 The Physico-chemical Makeup of the Cell Membrane ........... 115
   13.1 Background ............................................ 115
        (1)  The membrane theory .............................. 115
        (2)  LFCH (and AI Hypothesis) ......................... 118
   13.2 Ionic permeation ...................................... 119
   13.3 Water traffic into and out of living cells is bulk-
        phase limited ......................................... 123
   13.4 Permeability of living cells to water is orders of 
        magnitudes faster than that of phospholipid 
        bilayers .............................................. 126
   13.5 Interfacial tension of living cell is too low to 
        match that of a phospholipid layer .................... 126
   13.6 Ionophores strongly enhance K+ permeability through
        authentic continuous phospholipid bilayer but no 
        impact on the K+ permeability of cell membrane of 
        virtually all living cells investigated ............... 129
   13.7 Strongly polarized-and-oriented water in lieu of
        phospholipid bilayer .................................. 131
14 The Living State: Electronic Mechanisms for its 
   Maintenance and Control .................................... 135
   14.1 The launching of the association-induction 
        hypothesis ............................................ 136
        (1)  Prelude .......................................... 136
        (2)  The c-value and a quantitative theory for the 
             control of the rank order of ionic adsorption .... 140
        (3)  The c-value analogue and its control of protein
             folding vs water polarization .................... 143
             (3.1)  The control of the secondary structure
                    of proteins ............................... 144
             (3.2)  The control of the physical state of the
                    bulk-phase water .......................... 147
   14.2 What distinguishes life from death at the cell and
        below-cell level? The new concept of the living 
        state ................................................. 148
        (1)  The living state ................................. 148
        (2)  The elemental living machine ..................... 152
        (3)  What distinguishes the dead state from the 
             active living state? ............................. 154
        (4)  What does food provide: energy or negative
             entropy? ......................................... 155
   14.3 Electronic mechanisms of remote, one-on-many
        control ............................................... 156
        (1)  Electronic induction in proteins ................. 158
        (2)  Cooperative interaction as the basis for abrupt
             and coherent transitions between stable states ... 164
        (3)  The classification of drugs and other cardinal
             adsorbents: EWC, EDC and EIC ..................... 167
        (4)  ATP, the Queen of cardinal adsorbents, as an
             EWC .............................................. 168
        (5)  What do drugs and other cardinal adsorbents
             do? .............................................. 170
        (6)  How cardinal adsorbents produce across-the-
             board uniform electron-density change of many 
             proximal functional groups ....................... 171
        (7)  Multiple control of single enzyme sites and 
             "gangs" of pharmacological "effector sites" ...... 175
15 Physiological Activities: Electronic Mechanisms and Their
   Control by ATP, Drugs, Hormones and Other Cardinal 
   Adsorbents ................................................. 179
   15.1 Selective solute distribution in living cells: 
        cooperativity and control ............................. 180
        (1)  K+, Na+ and Mg2+ accumulation in living cells ..... 180
        (2)  Control of the solvency of cell water by ATP ..... 183
        (3)  The control of the rank order in alkali-metal 
             ion adsorption by ouabain ........................ 186
        (4)  Control of D-glucose and glycine distribution 
             by insulin ....................................... 192
   15.2 The control of ion permeability ....................... 194
        (1)  Na+ efflux in normal and in IAA-poisoned muscle
             cells ............................................ 195
        (2)  The influence of ouabain on the rank order of
             the strengths of alkali-metal ion adsorption on
             cell surface anionic sites ....................... 198
   15.3 Salt-ion-induced swelling of normal and injured 
        cells ................................................. 200
        (1)  Cell swelling in isotonic KCl .................... 200
        (2)  Injury-induced cell swelling in isotonic NaCl .... 201
   15.4 True active transport across bifacial epithelial 
        cell layers and other bifacial systems ................ 203
        (1)  Active Na+ transport across frog skin ............ 205
        (2)  Active Rb+ transport into Nitella cell sap ....... 207
   15.5 The resting potential ................................. 209
        (1)  Historic background .............................. 209
             (1.1)  The membrane potential theory and 
                    modifications ............................. 209
                    (1.1.1)  The ionic theory ................. 210
                    (1.1.2)  The electrogenic pump theory ..... 212
             (1.2)  Phase-boundary potential theories ......... 213
                    (1.2.1)  Baur's ion adsorption potential
                             theory ........................... 213
                    (1.2.2)  Beutner's phase boundary 
                             potential theory ................. 214
                    (1.2.3)  Horovitz's (and Nicolsky's) 
                             theories of glass electrode 
                             potentials ....................... 215
        (2)  The close-contact surface adsorption (CSA) 
             theory of cellular electrical potentials ......... 216
             (2.1)  The importance of close-contact once 
                    more ...................................... 217
             (2.2)  Out of the union of two failed models 
                    for the the membrane potential, a 
                    super-model for the close-contact 
                    surface adsorption potential .............. 218
                    (2.2.1)  Both model and living cell show
                             similar rank order of 
                             sensitivity to alkali-metal
                             ions ............................. 218
                    (2.2.2)  Both model and living cell are
                             indifferent to external CI ....... 219
                    (2.2.3)  Both model and living cell
                             demonstrate an approximately 
                             150 times greater sensitivity 
                             to H+ than to K+ ................. 219
                    (2.2.4)  Both model and living cell are
                             indifferent to external Mg++ ..... 219
             (2.3)  The original equation for the resting 
                    potential ................................. 220
             (2.4)  Edelmann's deciding experiment ............ 221
             (2.5)  Control of the resting potential .......... 221
                    (2.5.1) Control by ouabain and other 
                            EDC's by raising the c-value of 
                            surface β- and γ-carboxyl 
                            groups ............................ 222
                    (2.5.2) Control by adrenaline as an EWC
                            by lowering the c-value of 
                            surface β- and γ-carboxyl
                            groups ............................ 223
   15.6 The action potential .................................. 224
        (1)  Hodgkin-Huxley's theory of action potential ...... 225
             (1.1)  No standing Na+potential .................. 225
             (1.2)  Na channel not specific to Na+ ............ 226
        (2)  The close-contact surface adsorption (CSA) 
             theory of action potential ....................... 226
             (2.1)  The identification of the anionic groups
                    mediating ionic permeation and 
                    generating the resting potential as β-
                    and γ-carboxyl groups carried on cell
                    surface proteins .......................... 229
             (2.2)  The selective preference for ions of the 
                    cell surface β- and γ-carboxyl groups is
                    mutable, rather than fixed as in the
                    ionic theory .............................. 229
             (2.3)  The anionic groups mediating the entry 
                    of Na+ into squid axons during an action
                    potential are the same β- and γ-carboxyl
                    groups but with a much higher c-value ..... 230
             (2.4)  Swelling of nerve fiber accompanying an
                    action potential .......................... 230
             (2.5)  The propagated c-value increase at the 
                    surface β- and γ-carboxyl groups goes 
                    pari passu with the depolarization of 
                    cell surface water molecules .............. 231
16 Summary Plus ............................................... 233
   16.1 Early history ......................................... 233
   16.2 The membrane (pump) theory ............................ 235
   16.3 Early protoplasm-oriented cell physiologists and 
        their contributions ................................... 236
   16.4 Ling's fixed charge hypothesis (LFCH) ................. 237
   16.5 The polarized multilayer (PM) theory of cell water .... 239
   16.6 The association-induction hypothesis proper ........... 242
        (1)  The resting living state ......................... 242
             (1.1)  The resting living state as a 
                    (metastable) equilibrium state ............ 242
             (1.2)  The resting living state as a 
                    low-entropy state ......................... 243
             (1.3)  Do the major components of the living
                    cell exist in a different physical state
                    or conformation? .......................... 243
                    (1.3.1)  Conformation of hemoglobin in
                             red blood cells from K+, Na+ 
                             distribution ..................... 243
                    (1.3.2)  Conformation of myosin in frog
                             muscle cells from 
                             nonelectrolyte distribution ...... 245
                    (1.3.3)  Conformation of myosin and 
                             actin in frog muscle cells from
                             vapor sorption ................... 245
             (1.4)  In maintaining the resting living state 
                    ATP is indispensable ...................... 246
             (1.5)  Where does the excess (cell) water-to-
                    (cell) water interaction energy in the
                    resting living cell originate? ............ 246
        (2)  Global coherence and internal connectedness
             in protoplasm .................................... 248
             (2.1)  Native hemoglobin in vitro ................ 248
             (2.2)  NaOH-denatured hemoglobin in vitro ........ 248
             (2.3)  Muscle proteins in vivo ................... 249
        (3)  Interpretation of the four classic 
             physiological manifestations ..................... 250
             (3.1)  Solute distribution ....................... 250
             (3.2)  Solute permeability ....................... 251
             (3.3)  Cell volume control ....................... 252
             (3.4)  Resting potential ......................... 253
        (4)  Physiological activities as reversible 
             cooperative transitions mediated by inductive
             effects .......................................... 254
             (4.1)  c-value and c-value analogue: 
                    the keyboard of life ...................... 255
             (4.2)  Changes in the partners of ionic and 
                    hydrogen bonds as initiators as well as 
                    targets of transmitted inductive effect ... 257
             (4.3)  Classification of drugs and other
                    cardinal adsorbents ....................... 258
             (4.4)  Maintenance and modulation of the 
                    resting living state by various cardinal
                    adsorbents ................................ 258
                    (4.4.1)  Maintenance of the living state
                             by ATP as EWC .................... 258
                    (4.4.2)  Modulation of the resting 
                             living state by ouabain as an
                             EDC .............................. 259
             (4.5)  Cyclic reversible physiological 
                    activities ................................ 264
                    (4.5.1)  True active transport ............ 264
                    (4.5.2)  The action potential ............. 265
        (5)  The death state .................................. 266
             (5.1)  Life and death or protoplasm .............. 267
             (5.2)  How protoplasm dies ....................... 267
             (5.3)  The anatomy of dead protoplasm or cell .... 268
   16.7 A sketch of the history of Mankind's search for
        understanding of life ................................. 270
17 Epilogue ................................................... 272
   Crossword puzzle and fox hunt: two models for scientific
   research ................................................... 272
   The secret of past success in major directional changes .... 273
   Fragmentation and its impact on the future of science ...... 275
   A verified unifying theory to put Humpty-Dumpty together
   again ...................................................... 276
   How a dedicated biology teacher holds the key to a better
   future for basic life science .............................. 277
   "Science, The Endless Frontier" can be as shining and
   promising as ever .......................................... 279

Appendix 1 .................................................... 282
Super-Glossary ................................................ 288
List of Abbreviations ......................................... 330
List of Figures, Tables and Equations ......................... 333
References .................................................... 334
Author Index .................................................. 351
Subject Index ................................................. 356
Acknowledgments ............................................... 366
About the Author .............................................. 371


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:46 2019. Размер: 26,070 bytes.
Посещение N 2062 c 30.11.2010