Differential geometry applied to dynamical systems (Singapore; Hackensack, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDifferential geometry applied to dynamical systems / J.-M.Ginoux. - Singapore; Hackensack: World Scientific, 2009. - xxvii, 312 p.: ill. + 1 CD-ROM. - Bibliogr.: p.297-307. - Ind.: p.309-312. - (World Scientific series on nonlinear science. Ser. A. Monographs and treatises; Vol.66). - ISBN-13 978-981-4277-14-3; ISBN-10; 981-4277-14-2 ISSN 1793-1010
 

Оглавление / Contents
 
Preface ....................................................... vii
Acknowledgments .............................................. xiii
List of Figures ............................................. xxiii
List of Examples .............................................. xxv

Dynamical Systems ............................................... 1

1  Differential Equations ....................................... 3
   1.1  Galileo's pendulum ...................................... 3
   1.2  D'Alembert transformation ............................... 5
   1.3  From differential equations to dynamical systems ........ 6
2  Dynamical Systems ............................................ 7
   2.1  State space phase space ................................. 8
   2.2  Definition .............................................. 8
   2.3  Existence and uniqueness ................................ 8
   2.4  Flow, fixed points and null-clines ...................... 9
   2.5  Stability theorems ..................................... 13
        2.5.1  Linearized system ............................... 13
        2.5.2  Hartman-Grobman linearization theorem ........... 13
        2.5.3  Liapounoff stability theorem .................... 13
   2.6  Phase portraits of dynamical systems ................... 14
        2.6.1  Two-dimensional systems ......................... 14
        2.6.2  Three-dimensional systems ....................... 18
   2.7  Various types of dynamical systems ..................... 22
        2.7.1  Linear and nonlinear dynamical systems .......... 22
        2.7.2  Homogeneous dynamical systems ................... 22
        2.7.3  Polynomial dynamical systems .................... 22
        2.7.4  Singularly perturbed systems .................... 23
        2.7.5  Slow-Fast dynamical systems ..................... 24
   2.8  Two-dimensional dynamical systems ...................... 24
        2.8.1  Poincaré index .................................. 24
        2.8.2  Poincaré contact theory ......................... 26
        2.8.3  Poincaré limit cycle ............................ 27
        2.8.4  Poincaré-Bendixson Theorem ...................... 29
   2.9  High-dimensional dynamical systems ..................... 31
        2.9.1  Attractors ...................................... 31
        2.9.2  Strange attractors .............................. 32
        2.9.3  First integrals and Lie derivative .............. 34
   2.10 Hamiltonian and integrable systems ..................... 34
        2.10.1 Hamiltonian dynamical systems ................... 34
        2.10.2 Integrable system ............................... 35
        2.10.3 K.A.M. Theorem .................................. 37
3  Invariant Sets .............................................. 41
   3.1  Manifold ............................................... 41
        3.1.1  Definition ...................................... 41
        3.1.2  Existence ....................................... 42
   3.2  Invariant sets ......................................... 42
        3.2.1  Global invariance ............................... 42
        3.2.2  Local invariance ................................ 44
4  Local Bifurcations .......................................... 47
   4.1  Center Manifold Theorem ................................ 47
        4.1.1  Center manifold theorem for flows ............... 48
        4.1.2  Center manifold approximation ................... 49
        4.1.3  Center manifold depending upon a parameter ...... 53
   4.2  Normal Form Theorem .................................... 54
   4.3  Local Bifurcations of Codimension 1 .................... 60
        4.3.1  Saddle-node bifurcation ......................... 62
        4.3.2  Transcritical bifurcation ....................... 63
        4.3.3  Pitchfork bifurcation ........................... 64
        4.3.4  Hopf bifurcation ................................ 66
5  Slow-Fast Dynamical Systems ................................. 69
   5.1  Introduction ........................................... 69
   5.2  Geometric Singular Perturbation Theory ................. 72
        5.2.1  Assumptions ..................................... 72
        5.2.2  Invariance ...................................... 73
        5.2.3  Slow invariant manifold ......................... 74
   5.3  Slow-fast dynamical systems - Singularly perturbed
        systems ................................................ 81
        5.3.1  Singularly perturbed systems .................... 81
        5.3.2  Slow-fast autonomous dynamical systems .......... 81
6  Integrability ............................................... 85
   6.1  Integrability conditions, integrating factor,
        multiplier ............................................. 85
        6.1.1  Two-dimensional dynamical systems ............... 86
        6.1.2  Three-dimensional dynamical systems ............. 89
   6.2  First integrals - Jacobi's last multiplier theorem ..... 94
        6.2.1  First integrals ................................. 94
        6.2.2  Jacobi's last multiplier theorem ................ 95
   6.3  Darboux theory of integrability ........................ 96
        6.3.1  Algebraic particular integral General
               integral ........................................ 96
        6.3.2  General integral ................................ 98
        6.3.3  Multiplier ..................................... 100
        6.3.4  Algebraic particular integral and fixed
               points ......................................... 102
        6.3.5  Homogeneous polynomial dynamical systems of
               degree m ....................................... 102
        6.3.6  Homogeneous polynomial dynamical systems of
               degree two ..................................... 108
        6.3.7  Planar polynomial dynamical systems ............ 114

Differential Geometry ......................................... 121

7  Differential Geometry ...................................... 123
   7.1  Concept of curves Kinematics vector functions ......... 124
        7.1.1  Trajectory curve ............................... 124
        7.1.2  Instantaneous velocity vector .................. 124
        7.1.3  Instantaneous acceleration vector .............. 125
   7.2  Gram-Schmidt process     Generalized Frenet moving
        frame ................................................. 125
        7.2.1  Gram-Schmidt process ........................... 126
        7.2.2  Generalized Frenet moving frame ................ 126
   7.3  Curvatures of trajectory curves - Osculating planes ... 127
   7.4  Curvatures and osculating plane of space curves ....... 129
        7.4.1  Frenet trihedron - Serret-Frenet formulae ...... 129
        7.4.2  Osculating plane ............................... 130
        7.4.3  Curvatures of space curves ..................... 131
   7.5  Flow curvature method ................................. 133
        7.5.1  Flow curvature manifold ........................ 133
        7.5.2  Flow curvature method .......................... 133
8  Dynamical Systems .......................................... 135
   8.1  Phase portraits of dynamical systems .................. 135
        8.1.1  Fixed points ................................... 135
        8.1.2  Stability theorems ............................. 137
9  Invariant Sets ............................................. 145
   9.1  Invariant manifolds ................................... 145
        9.1.1  Global invariance .............................. 146
        9.1.2  Local invariance ............................... 147
   9.2  Linear invariant manifolds ............................ 148
   9.3  Nonlinear invariant manifolds ......................... 155
10 Local Bifurcations ......................................... 159
   10.1 Center Manifold ....................................... 159
        10.1.1 Center manifold approximation .................. 159
        10.1.2 Center manifold depending upon a parameter ..... 167
   10.2 Normal Form Theorem ................................... 175
   10.3 Local bifurcations of codimension 1 ................... 181
11 Slow-Fast Dynamical Systems ................................ 183
   11.1 Slow manifold of n-dimensional slow-fast dynamical
        systems ............................................... 184
   11.2 Invariance ............................................ 187
   11.3 Flow Curvature Method - Singular Perturbation
        Method ................................................ 188
        11.3.1 Darboux invariance - Fenichel's invariance ..... 190
        11.3.2 Slow invariant manifold ........................ 191
   11.4 Non-singularly perturbed systems ...................... 200
12 Integrability .............................................. 203
   12.1 First integral ........................................ 203
        12.1.1 Global first integral .......................... 203
        12.1.2 Local first integral ........................... 204
   12.2 Linear invariant manifolds as first integral .......... 206
   12.3 Darboux theory of integrability ....................... 209
        12.3.1 General integral - Multiplier .................. 209
        12.3.2 Darboux homogeneous polynomial dynamical
               systems of degree two .......................... 211
        12.3.3 Planar polynomial dynamical systems ............ 212
13 Inverse Problem ............................................ 215
   13.1 Flow curvature manifold of polynomial dynamical
        systems ............................................... 215
        13.1.1 Two-dimensional polynomial dynamical systems ... 215
        13.1.2 Three-dimensional polynomial dynamical
               systems ........................................ 217
   13.2 Flow curvature manifold symmetry (parity) ............. 218
        13.2.1 Two-dimensional polynomial dynamical systems ... 219
        13.2.2 n-dimensional polynomial dynamical systems ..... 220
   13.3 Inverse problem for polynomial dynamical systems ...... 222
        13.3.1 Two-dimensional polynomial dynamical systems ... 222
        13.3.2 Three-dimensional polynomial dynamical
               systems ........................................ 223

Applications .................................................. 225

14 Dynamical Systems .......................................... 227
   14.1 FitzHugh-Nagumo model ................................. 227
   14.2 Pikovskii-Rabinovich-Trakhtengerts model .............. 228
15 Invariant Sets - Integrability ............................. 229
   15.1 Pikovskii-Rabinovich-Trakhtengerts model .............. 229
   15.2 Rikitake model ........................................ 231
   15.3 Chua's model .......................................... 232
   15.4 Lorenz model .......................................... 234
16 Local Bifurcations ......................................... 237
   16.1 Chua's model .......................................... 237
   16.2 Lorenz model .......................................... 239
17 Slow-Fast Dynamical Systems - Singularly Perturbed
   Systems .................................................... 241
   17.1 Piecewise Linear Models 2D & 3D ....................... 241
        17.1.1 Van der Pol piecewise linear model ............. 241
        17.1.2 Chua's piecewise linear model .................. 243
   17.2 Singularly Perturbed Systems 2D & 3D .................. 245
        17.2.1 FitzHugh-Nagumo model .......................... 245
        17.2.2 Chua's model ................................... 247
   17.3 Slow Fast Dynamical Systems 2D & 3D ................... 248
        17.3.1 Brusselator model .............................. 248
        17.3.2 Pikovskii-Rabinovich-Trakhtengerts model ....... 249
        17.3.3 Rikitake model ................................. 250
   17.4 Piecewise Linear Models 4D & 5D ....................... 251
        17.4.1 Chua's fourth-order pieccwise linear model ..... 251
        17.4.2 Chua's fifth-order piecewise linear model ...... 253
   17.5 Singularly Perturbed Systems 4D & 5D .................. 255
        17.5.1 Chua's fourth-order cubic model ................ 255
        17.5.2 Chua's fifth-order cubic model ................. 257
   17.6  Slow Fast Dynamical Systems 4D & 5D .................. 258
        17.6.1 Homopolar dynamo model ......................... 258
        17.6.2 Mofatt model ................................... 260
        17.6.3 Magnetoconvection model ........................ 261
   17.7 Slow manifold gallery ................................. 263
   17.8 Forced Van der Pol model .............................. 263

Discussion .................................................... 265

Appendix A .................................................... 269
   A.l  Lie derivative ........................................ 269
   A.2  Hessian ............................................... 270
   A.3  Jordan form ........................................... 270
   A.4  Connected region ...................................... 271
   A.5  Fractal dimension ..................................... 272
        A.5.1  Kolmogorov or capacity dimension ............... 273
        A.5.2  Liapounoff exponents Wolf, Swinney, Vastano
               algorithm ...................................... 273
        A.5.3  Liaponnoff dimension and Kaplan-Yorkc
               conjecture ..................................... 274
        A.5.4  Liaponnoff dimension and Chlouverakis-Sprott
               conjecture ..................................... 275
   A.6  Identities ............................................ 276
        A.6.1  Concept of curves .............................. 276
        A.6.2  Gram-Schmidt process and Frenet moving frame ... 277
        A.6.3  Frenet trihedron and curvatures of space
               curves ......................................... 279
        A.6.4  First identity ................................. 280
        A.6.5  Second identity ................................ 281
        A.6.6  Third identity ................................. 282
   A.7  Homeomorphism and diffeomorphism ...................... 283
        A.7.1  Homeomorphism .................................. 283
        A.7.2  Diffeomorphism ................................. 283
   A.8  Differential equations ................................ 283
        A.8.1  Two-dimensional dynamical systems .............. 283
        A.8.2  Three-dimensional dynamical systems ............ 284
   A.9  Generalized Tangent Linear System Approximation ....... 285
        A.9.1  Assumptions .................................... 285
        A.9.2  Corollaries .................................... 285

Mathematica Files ............................................. 291

Bibliography .................................................. 297

Index ......................................................... 309


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:46 2019. Размер: 19,113 bytes.
Посещение N 1950 c 07.12.2010