Belotserkovskii O.M. Constructive modeling of structural turbulence and hydrodynamic instabilities (Singapore; Hackensack, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBelotserkovskii O.M. Constructive modeling of structural turbulence and hydrodynamic instabilities. - Singapore; Hackensack: World Scientific, 2009. - xxiv, 464 p.: ill. - Incl. bibl. ref. - ISBN-10 981-283-301-3; ISBN-13 978-981-283-301-3
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
Preface ......................................................... v
Introduction ................................................... xi

1  Constructive Modeling of Free Developed Turbulence -
   Coherent Structures, Laminar Turbulent Transition, Chaos ..... 1
   1.1  Introduction ............................................ 1
   1.2  Rational averaging of large vortex structures .......... 12
   1.3  Some experimental and theoretical investigations ....... 29
   1.4  General problem formulation ............................ 38
   1.5  Simulation of coherent structures in turbulent flows ... 41
   1.6  Correctness of the problem formulation ................. 50
   1.7  Calculated results for coherent structures in the
        wake behind a body ..................................... 53
   1.8  On the analysis of spectral characteristics ............ 60
   1.9  Numerical simulation of the random component of
        turbulence ............................................. 71
   1.10 Laminar turbulent transition. Simulation of three-
        dimensional flows in clean rooms ....................... 76
   1.11 Transition to chaos (numerical experiments) ............ 84
        1.11.1 General aspects ................................. 84
        1.11.2 "Kolmogoroff's flow'' of the viscous fluid at
               subcritical and supercritical regimes.
               Transition to chaos ............................. 86
        1.11.3 Study of the large-scale turbulence in ocean ... 111
        1.11.4 Numerical simulation of the internal waves in
               a stratified fluid ............................. 128
        1.11.5 Rayleigh-Taylor instability: evolution to the
               turbulent stage ................................ 137
        1.11.6 Numerical simulation of the convective flow
               over large-scale source of energy (big fire
               in the atmosphere) ............................. 143
   1.12 Axiomatic model of fully developed turbulence ......... 152
   1.13 Conclusion ............................................ 154
   Acknowledgement ............................................ 157
   References ................................................. 157

2  Modeling of Richtmyer-Meshkov Instability .................. 164
   Introduction ............................................... 164
   2.1  Numerical method ...................................... 169
   2.2  Model calculations .................................... 171
        2.2.1  The Couchy problem for one-dimensional
               isotopic flow of an ideal gas .................. 174
        2.2.2  Boundary conditions ............................ 176
        2.2.3  Comparison of results by different models ...... 178
   2.3  The analytical approach ............................... 181
   2.4  Computational experiment .............................. 186
   2.5  Physical mechanisms of the RMI evolution .............. 190
   2.6  A sequential transition to turbulence in RMI
        instability ........................................... 198
   2.7  Three-dimensional numerical simulation of the RMI ..... 200
   2.8  Conclusion ............................................ 208
   Appendix ................................................... 209
   References ................................................. 210

3  Rayleigh-Taylor Instability: Analysis and Numerical
   Simulation ................................................. 214
   3.1  The theory of Rayleigh Taylor instability:
        modulatory perturbations and mushroom-flow dynamics ... 214
        3.1.1  Introduction ................................... 215
        3.1.2  Periodicity and symmetry of modulatory
               perturbations .................................. 216
        3.1.3  Cutting off the singularities associated with
               jets ........................................... 220
        3.1.4  Classification of perturbations ................ 223
        3.1.5  Results ........................................ 227
        3.1.6  Classification of stability problems ........... 230
        3.1.7  Initiation of a mushroom structure ............. 232
        3.1.8  The mushroom flow structure .................... 238
        3.1.9  Numerical simulation ........................... 243
   3.2  Development of the Rayleigh- Taylor instability:
        numerical simulations ................................. 246
        3.2.1  Introduction ................................... 246
        3.2.2  Numerical simulation of RTI development by
               the method of large particles .................. 247
        3.2.3  Intermode interaction in RTI ................... 252
        3.2.4  RTI simulation by the method of pseudo-
               compressibility ................................ 257
        3.2.5  Numerical simulation of the RTI development
               by means of high-resolution Euler hydrocode .... 262
   References ................................................. 280

4  Direct Statistical Approach for Aerohydrodynamic
   Problems ................................................... 285
   4.1  Statistical modeling in rarefied gas-dynamics ......... 285
        4.1.1  Introduction ................................... 285
        4.1.2  Stochastic analogue of the Boltzmann
               equation ....................................... 287
        4.1.3  Probabilistic approach to the basic equation
               of the collision stage ......................... 291
        4.1.4  Algorithms for modeling the collision
               relaxation ..................................... 294
   4.2  Direct statistical modeling of the shock wave in
        gaseous flow with velocity pulsations ................. 299
        4.2.1  Introduction ................................... 299
        4.2.2  Problem formulation ............................ 300
        4.2.3  Results of the numerical modeling .............. 303
        4.2.4  Conclusion ..................................... 307
   4.3  Direct statistical simulation for some problems of
        turbulence ............................................ 307
        4.3.1  Introduction ................................... 307
        4.3.2  An application of the statistical method of
               particles in cell for simulation of the
               momentumless wake .............................. 308
        4.3.3  An application of the statistical method of
               particles in cell to the problem of
               a turbulent spot ............................... 311
        4.3.4  The direct statistical modeling of the
               turbulence within a wake behind the cylinder ... 320
        4.3.5  Simulation results ............................. 330
        4.3.6  Conclusion ..................................... 331
   References ................................................. 333

Appendix A  Computational Experiment: Direct Numerical
            Simulation of Complex Gas-Dynamical Flows on the
            Basis of Euler, Navier-Stokes, and Boltzmann
            Models ............................................ 336
   A.l  Introduction .......................................... 336
        A.1.1  The use of numerical methods ................... 336
        A.1.2  Numerical methods applicable to gas-dynamical
               problems ....................................... 339
               A.1.2.1  Method of finite differences .......... 340
               A.1.2.2  Method of integral relations .......... 340
               A.1.2.3  Method of characteristics ............. 341
               A.l.2.4  Particle-in-cell (PIC) method ......... 341
        A.1.3  Development of numerical algorithms ............ 342
               A.1.3.1  Steady-state schemes .................. 342
               A.1.3.2  Unsteady-state schemes ................ 344
               A.1.3.3  Large-particle method ................. 344
        A.1.4  Computational experiments ...................... 345
   A.2  "Large-particles" method for the study of complex
        gas flows ............................................. 347
        A.2.1  Calculations ................................... 347
        A.2.2  Boundary conditions ............................ 349
        A.2.3  Viscosity effects .............................. 350
        A.2.4  Stability of the scheme ........................ 352
        A.2.5  Advantages ..................................... 354
        A.2.6  Results ........................................ 355
   A.3  Computation of incompressible viscous flows ........... 363
        A.3.1  The problem .................................... 363
        A.3.2  The difference scheme .......................... 364
        A.3.3  Results ........................................ 367
   A.4  Computation of viscous compressible gas flow
        (conservative flow method) ............................ 369
        A.4.1  The method ..................................... 369
        A.4.2  Analysis ....................................... 372
        A.4.3  Results ........................................ 374
   A.5  Statistical model for the investigation of rarefied
        gas flows ............................................. 376
        A.5.1  The model ...................................... 376
        A.5.2  The method ..................................... 378
        A.5.3  Results ........................................ 383
   A.6  Conclusion ............................................ 386
   References ................................................. 386

Appendix В  Formation of Large-Scale Structures in the Gap
            Between Rotating Cylinders: the Rayleigh-
            Zeldovich Problem ................................. 389
   B.l  Introduction .......................................... 389
   B.2  Background ............................................ 391
   B.3  Direct numerical simulation methodology ............... 392
   B.4  Statement of the problem and results .................. 393
        B.4.1  The inner cylinder is at rest and the outer
               cylinder is rotating ........................... 394
        B.4.2  The inner cylinder is at rest and the outer
               cylinder is brought to rest .................... 398
        B.4.3  The inner cylinder is rotating and the outer
               cylinder is at rest ............................ 400
   B.5  Conclusions ........................................... 403
   References ................................................. 404

Appendix С  Universal Technology of Parallel Computations
            for the Problems Described by Systems of
            the Equations of Hyperbolic Type: A Step
            to Supersolver .................................... 405
   C.l  Introduction .......................................... 405
   C.2  Unified methodics ..................................... 406
   C.3  A method for using non-conservative variables ......... 410
   C.4  Parallel program implementation ....................... 413
   C.5  Results of numerical simulation ....................... 415
   C.6  Conclusion ............................................ 418
   References ................................................. 420

Appendix D  Supercomputers in Mathematical Modeling of
            the High Complexity Problems ...................... 422
   D.l  Introduction .......................................... 422
   D.2  Turbulence and hydrodynamic instabilities ............. 424
   D.3  Supersolver ........................................... 428
   D.4  Applications .......................................... 429
        D.4.1  Gas-dynamics (CFD) ............................. 429
        D.4.2  Hydrodynamic instabilities ..................... 434
        D.4.3  Seismic data processing ........................ 436
        D.4.4  Safety of housing and industrial
               constructions under intensive dynamic
               loadings ....................................... 437
        D.4.5  Nonlinear contact shell dynamics ............... 439
        D.4.6  Computer models in medicine .................... 440
   D.5  Conclusion ............................................ 444
   References ................................................. 445

Appendix E  On Nuts and Bolts of Structural Turbulence and
            Hydrodynamic Instabilities ........................ 448
   E.l  Rational Constructivism ............................... 448
   E.2  Back in Mechanics ..................................... 449
   E.3  Large Vortices ........................................ 450
   E.4  Structural Instabilities .............................. 452
   E.5  Vortex Cascades ....................................... 453
   E.6  Principal Modes ....................................... 453
   References ................................................. 456

Appendix F  List of the Main Publications of
            О.М. Belotserkovskii .............................. 459

Monographs .................................................... 459

Papers ........................................................ 460


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:46 2019. Размер: 17,154 bytes.
Посещение N 1853 c 07.12.2010