Wiedemann H. Particle accelerator physic (Berlin; Heidelberg, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаWiedemann H. Particle accelerator physics. - 3rd ed. - Berlin; Heidelberg: Springer, 2007. - xi, 948 p. - ISBN 978-3-540-49043-2
 

Место хранения: 016 | Библиотека Института ядерной физики СО РАН | Новосибирск

Оглавление / Contents
 
Part I Tools We Need

1  Of Fields and Forces ......................................... 3
   1.1  Electromagnetic Fields of Charged Particles ............. 3
        1.1.1  Vector and Scalar Potential ...................... 5
        1.1.2  Wave Equation .................................... 5
        1.1.3  Induction ........................................ 7
        1.1.4  The Lorentz Force ................................ 7
        1.1.5  Equation of Motion ............................... 8
        1.1.6  Energy Conservation ............................. 10
   1.2  Primer in Special Relativity ........................... 11
        1.2.1  Lorentz Transformation .......................... 11
        1.2.2  4-Vectors ....................................... 13
        1.2.3  Spatial and Spectral Distribution of
               Radiation ....................................... 17
   1.3  Elements of Classical Mechanics ........................ 18
        1.3.1  How to Formulate a Lagrangian? .................. 20
        1.3.2  The Lorentz Force ............................... 21
        1.3.3  Frenet  Serret Coordinates ...................... 22
   1.4  Hamiltonian Formulation ................................ 23
        1.4.1  Cyclic Variables ................................ 25
        1.4.2  Canonical Transformations ....................... 25
        1.4.3  Curvilinear Coordinates ......................... 28
        1.4.4  Extended Hamiltonian ............................ 30
        1.4.5  Change of Independent Variable .................. 30
        
2  Particle Dynamics in Electromagnetic Fields ................. 37
   2.1  The Lorentz Force ...................................... 37
   2.2  Fundamentals of Charged Particle Beam Optics ........... 38
        2.2.1  Particle Beam Guidance .......................... 38
        2.2.2  Particle Beam Focusing .......................... 42
   2.3  Equation of Motion ..................................... 46
   2.4  Equations of Motion from the Lagrangian and
        Hamiltonian ............................................ 49
        2.4.1  Equations of Motion from Lagrangian ............. 49
        2.4.2  Canonical Momenta ............................... 51
        2.4.3  Equation of Motion from Hamiltonian ............. 51
        2.4.4  Harmonic Oscillator ............................. 53
        2.4.5  Action-Angle Variables .......................... 54
   2.5  Solutions of the Linear Equations of Motion ............ 55
        2.5.1  Linear Unperturbed Equation of Motion ........... 55
        2.5.2  Matrix Formulation .............................. 57
        2.5.3  Wronskian ....................................... 57
        2.5.4  Perturbation Terms .............................. 59

3  Electromagnetic Fields ...................................... 63
   3.1  Pure Multipole Field Expansion ......................... 63
        3.1.1  The Laplace Equation ............................ 63
        3.1.2  Deflecting Magnets .............................. 65
        3.1.3  Focusing Device ................................. 66
        3.1.4  Multipole Magnets ............................... 74
        3.1.5  Multipole Fields for Beam Transport Systems ..... 77
   3.2  General Transverse Magnetic-Field Expansion ............ 80
   3.3  Third-Order Differential Equation of Motion ............ 87
   3.4  Longitudinal Field Devices ............................. 92
   3.5  Air Coil Magnets ....................................... 94
   3.6  Periodic Wiggler Magnets ............................... 99
        3.6.1    Wiggler Field Configuration .................. 100
   3.7  Electric Field Components ............................. 104
        3.7.1  Electrostatic Deflectors ....................... 104
        3.7.2  Electrostatic Focusing Devices ................. 105
        3.7.3  Iris Doublet ................................... 107
        3.7.4  Einzellens ..................................... 108
        3.7.5  Electrostatic Quadrupolc ....................... 109
        
Part II Beam Dynamics
        
4  Single Particle Dynamics ................................... 115
   4.1  Linear Beam Transport Systems ......................... 116
        4.1.1    Nomenclature ................................. 117
   4.2  Matrix Formalism in Linear Beam Dynamics .............. 118
        4.2.1  Drift Space .................................... 120
        4.2.2  Quadrupolc Magnet .............................. 120
        4.2.3  Thin Lens Approximation ........................ 122
        4.2.4  Quadrupole End Field Effects ................... 125
   4.3  Focusing in Bending Magnets ........................... 129
        4.3.1    Sector Magnets ............................... 130
        4.3.2  Fringe Field Effects ........................... 131
        4.3.3  Finite Pole Gap ................................ 133
        4.3.4  Wedge Magnets .................................. 135
        4.3.5  Rectangular Magnet ............................. 137
        4.3.6  Focusing in a Wiggler Magnet ................... 138
        4.3.7  Hard Edge Model of Wiggler Magnets ............. 141
   4.4  Elements of Beam Dynamics ............................. 143
        4.4.1  Building Blocks for Beam Transport Lines ....... 143
        4.4.2  Isochronous Systems ............................ 146

5  Particle Beams and Phase Space ............................. 153
   5.1  Beam Emittance ........................................ 154
        5.1.1  Liouville's Theorem ............................ 155
        5.1.2  Transformation in Phase Space .................. 158
        5.1.3  Beam Matrix .................................... 161
   5.2  Betatron Functions .................................... 166
        5.2.1  Beam Envelope .................................. 169
   5.3  Beam Dynamics in Terms of Betatron Functions .......... 169
        5.3.1  Beam Dynamics in Normalized Coordinates ........ 172
   5.4  Dispersive Systems .................................... 175
        5.4.1  Analytical Solution ............................ 175
        5.4.2  (3 x 3)-Transformation Matrices ................ 177
        5.4.3  Linear Achromat ................................ 178
        5.4.4  Spectrometer ................................... 183
        5.4.5  Measurement of Beam Energy Spectrum ............ 184
        5.4.6  Path Length and Momentum Compaction ............ 187

6  Longitudinal Beam Dynamics ................................. 191
   6.1  Longitudinal Particle Motion .......................... 192
        6.1.1    Longitudinal Phase Space Dynamics ............ 194
   6.2  Equation of Motion in Phase Space ..................... 197
        6.2.1  Small Oscillation Amplitudes ................... 199
        6.2.2  Phase Stability ................................ 203
        6.2.3  Acceleration of Charged Particles .............. 207
   6.3  Longitudinal Phase Space Parameters ................... 211
        6.3.1  Separatrix Parameters .......................... 211
        6.3.2  Momentum Acceptance ............................ 213
        6.3.3  Bunch Length ................................... 216
        6.3.4  Longitudinal Beam Emittance .................... 218
        6.3.5  Phase Space Matching ........................... 219
   6.4  Higher Order Phase Focusing ........................... 224
        6.4.1  Path Length in Higher Order .................... 224
        6.4.2  Higher Order Phase Space Motion ................ 226
        6.4.3  Stability Criteria ............................. 231
        
7  Periodic Focusing Systems .................................. 237
   7.1  FODO Lattice .......................................... 238
        7.1.1  Scaling of FODO Parameters ..................... 239
        7.1.2  Betatron Motion in Periodic Structures ......... 243
        7.1.3  General FODO Lattice ........................... 245
   7.2  Beam Dynamics in Periodic Closed Lattices ............. 249
        7.2.1  Hill's Equation ................................ 249
        7.2.2  Periodic Betatron Functions .................... 252
        7.2.3  Periodic Dispersion Function ................... 255
        7.2.4  Periodic Lattices in Circular Accelerators ..... 263
   7.3  FODO Lattice and Acceleration ......................... 275
        7.3.1  Lattice Structure .............................. 275
        7.3.2  Transverse Beam Dynamics and Acceleration ...... 276
        7.3.3  Adiabatic Damping .............................. 280
        
Part III Beam Parameters
        
8  Particle Beam Parameters ................................... 289
   8.1  Definition of Beam Parameters ......................... 289
        8.1.1  Beam Energy .................................... 289
        8.1.2  Time Structure ................................. 290
        8.1.3  Beam Current ................................... 290
        8.1.4  Beam Dimensions ................................ 292
   8.2  Damping ............................................... 293
        8.2.1    Robinson Criterion ........................... 294
   8.3  Particle Distribution in Longitudinal Phase Space ..... 301
        8.3.1  Energy Spread .................................. 301
        8.3.2  Bunch Length ................................... 303
   8.4  Transverse Beam Ernittance ............................ 303
        8.4.1  Equilibrium Beam Ernittance .................... 304
        8.4.2  Ernittance Increase in a Beam Transport Line ... 305
        8.4.3  Vertical Beam Ernittance ....................... 306
        8.4.4  Beam Sizes ..................................... 307
        8.4.5  Beam Divergence ................................ 310
   8.5  Variation of the Damping Distribution ................. 310
        8.5.1    Damping Partition and rf-Frequency ........... 310
   8.6  Variation of the Equilibrium Beam Ernittance .......... 312
        8.6.1  Beam Ernittance and Wiggler Magnets ............ 312
        8.6.2  Damping Wigglers ............................... 315
   8.7  Robinson Wiggler ...................................... 317
        8.7.1  Damping Partition and Synchrotron
               Oscillation .................................... 317
        8.7.2  Can we Eliminate the Beam Energy Spread? ....... 318
   8.8  Beam Life Time ........................................ 319
        8.8.1  Beam Lifetime and Vacuum ....................... 321
        8.8.2  Ultra High Vacuum System ....................... 329

9  Vlasov and Fokker—Planck Equations ......................... 335
   9.1  The Vlasov Equation ................................... 336
        9.1.1  Betatron Oscillations and Perturbations ........ 341
        9.1.2  Damping ........................................ 343
   9.2  Damping of Oscillations in Electron Accelerators ...... 345
        9.2.1  Damping of Synchrotron Oscillations ............ 345
        9.2.2  Damping of Vertical Betatron Oscillations ...... 349
        9.2.3  Robinson's Damping Criterion ................... 352
        9.2.4  Damping of Horizontal Betatron Oscillations .... 355
   9.3  The Fokker Planck Equation ............................ 355
        9.3.1  Stationary Solution of the Fokker Planck
               Equation ....................................... 358
        9.3.2  Particle Distribution within a Finite
               Aperture ....................................... 362
        9.3.3  Particle Distribution in the Absence of
               Damping ........................................ 364
        
10 Equilibrium Particle Distribution .......................... 369
   10.1 Particle Distribution in Phase Space .................. 369
        10.1.1 Diffusion Coefficient and Synchrotron
               Radiation ...................................... 369
        10.1.2 Quantum Excitation of Beam Emittance ........... 372
   10.2 Equilibrium Beam Emittance ............................ 373
        10.2.1 Horizontal Equilibrium Beam Emittance .......... 373
        10.2.2 Vertical Equilibrium Beam Emittance ............ 374
   10.3 Equilibrium Energy Spread and Bunch Length ............ 375
        10.3.1 Equilibrium Beam Energy Spread ................. 375
        10.3.2 Equilibrium Bunch Length ....................... 376
        10.4 Phase-Space Manipulation ......................... 377
        10.4.1 Exchange of Transverse Phase-Space
               Parameters ..................................... 377
        10.4.2 Bunch Compression .............................. 378
        10.4.3 Alpha Magnet ................................... 380
   10.5 Polarization of a Particle Beam ....................... 383
        
11 Beam Emittance and Lattice Design .......................... 389
   11.1 Equilibrium Beam Emittance in Storage Rings ........... 391
        11.1.1 FODO Lattice ................................... 391
        11.1.2 Minimum Beam Emittance ......................... 392
   11.2 Beam Emittance in Periodic Lattices ................... 396
        11.2.1 The Double Bend Achromat Lattice (DBA) ......... 397
        11.2.2 The Triple Bend Achromat Lattice (TBA) ......... 399
        11.2.3 The Triplet Achromat Lattice (TAL) ............. 400
        11.2.4 Limiting Effects ............................... 402
        11.2.5 The FODO Lattice ............................... 404
        11.2.6 Optimum Emittance for Colliding Beam
               Storage Rings .................................. 407
      
Part IV Perturbations

12 Perturbations in Beam Dynamics ............................. 411
   12.1 Magnet Field and Alignment Errors ..................... 412
        12.1.1 Dipole Field Perturbations ..................... 414
        12.1.2 Existence of Equilibrium Orbits ................ 415
        12.1.3 Closed Orbit Distortion ........................ 418
        12.1.4 Quadrupole Field Perturbations ................. 426
   12.2 Chromatic Effects in a Circular Accelerator ........... 435
        12.2.1 Chromaticity ................................... 436
        12.2.2 Chromaticity Correction ........................ 439
   12.3 Kinematic Perturbation Terms .......................... 441
   12.4 Control of the Central Beam Path ...................... 443
        12.4.1 Launching Error ................................ 444
        12.4.2 Statistical Alignment and Field Error .......... 445
   12.5 Dipole Field Errors and Dispersion Function ........... 450
        12.5.1 Self Compensation of Perturbations ............. 451
        12.5.2 Perturbations in Open Transport Lines .......... 452
        12.6 Dispersion Function in Higher Order .............. 454
        12.6.1 Chromaticity in Higher Approximation ........... 456
        12.7 Nonlinear Chromaticity ........................... 458
   12.8 Perturbation Methods in Beam Dynamics ................. 463
        12.8.1 Periodic Distribution of Statistical
               Perturbations .................................. 464
        12.8.2 Periodic Perturbations in Circular
               Accelerators ................................... 467
        12.8.3 Statistical Methods to Evaluate
               Perturbations .................................. 469
        13 Hamiltonian Resonance Theory ....................... 479
   13.1 Resonances ............................................ 479
        13.1.1 Resonance Conditions ........................... 480
        13.1.2 Coupling Resonances ............................ 484
        13.1.3 Resonance Diagram .............................. 485
   13.2 Nonlinear Hamiltonian ................................. 487
   13.3 Resonant Terms ........................................ 490
   13.4 Resonance Patterns and Stop-Band Width ................ 492
        13.4.1 Half integer stop band ......................... 493
        13.4.2 Separatrices ................................... 495
        13.5 General Stop-Band Width .......................... 497
   13.6 Third-Order Resonance ................................. 498
        13.6.1 Particle Motion in Phase Space ................. 501
       
14 Hamiltonian Nonlinear Beam Dynamics ........................ 503
   14.1 Higher Order Beam Dynamics ............................ 503
        14.1.1 Multipole Errors ............................... 503
        14.1.2 Nonlinear Matrix Formalism ..................... 507
   14.2 Aberrations ........................................... 512
        14.2.1 Geometric Aberrations .......................... 514
        14.2.2 Filamentation of Phase Space ................... 520
        14.2.3 Chromatic Aberrations .......................... 523
        14.2.4 Particle Tracking .............................. 526
   14.3 Hamiltonian Perturbation Theory ....................... 528
        14.3.1 Tune Shift in Higher Order  534
       
Part V Acceleration
        
15 Charged Particle Acceleration .............................. 541
   15.1 Preinjector and Beam Preparation ...................... 541
        15.1.1 Prebuncher ..................................... 541
        15.1.2 Beam Chopper ................................... 544
   15.2 rf-Waveguides and Cavities ............................ 545
        15.2.1 Wave Equation .................................. 545
        15.2.2 Rectangular Waveguide Modes .................... 547
        15.2.3 Cylindrical Waveguide Modes .................... 551
   15.3 Linear Accelerator .................................... 554
        15.3.1 Basic Waveguide Parameters ..................... 555
        15.3.2 Particle Capture in a Linear Accelerator
               Field .......................................... 560
   15.4 rf-Cavities ........................................... 563
        15.4.1 Energy Gain .................................... 565
        15.4.2 rf-Cavity as an Oscillator ..................... 566
        15.4.3 Cavity Losses and Shunt Impedance .............. 568
   15.5 rf-Parameters ......................................... 572
        15.5.1 Synchronous Phase and rf-voltage ............... 573

16 Beam—Cavity Interaction .................................... 577
   16.1 Coupling between rf-Field and Particles ............... 577
        16.1.1 Network Modelling of an Accelerating Cavity .... 578
   16.2 Beam Loading and rf-System ............................ 581
   16.3 Higher Order Mode Losses in an rf-Cavity .............. 587
        16.3.1 Efficiency of Energy Transfer from Cavity
               to Beam ........................................ 590
   16.4 Beam Loading .......................................... 591
   16.5 Phase Oscillation and Stability ....................... 593
        16.5.1 Robinson Damping ............................... 594
        16.5.2 Potential Well Distortion ...................... 598
                
Part VI Coupled Motion
        
17 Dynamics of Coupled Motion ................................. 605
   17.1 Equations of Motion in Coupled Systems ................ 605
        17.1.1 Coupled Beam Dynamics in Skew Quadnipoles ...... 606
        17.1.2 Particle Motion in a Solenoidal Field .......... 608
        17.1.3 Transformation Matrix for a Solenoid Magnet .... 611
   17.2 Betatron Functions for Coupled Motion ................. 614
   17.3 Conjugate Trajectories ................................ 614
   17.4 Hamiltonian and Coupling .............................. 621
        17.4.1 Linearly Coupled Motion ........................ 621
        17.4.2 Higher Order Coupling Resonances ............... 630
        17.4.3 Multiple Resonances ............................ 630
        
Part VII Intense Beams
        
18 Statistical and Collective Effects ......................... 635
   18.1 Statistical Effects ................................... 636
        18.1.1 Schottky Noise ................................. 636
        18.1.2 Stochastic Cooling ............................. 638
        18.1.3 Touschek Effect ................................ 638
        18.1.4 Intrabeam Scattering ........................... 640
   18.2 Collective Self-Fields ................................ 642
        18.2.1 Stability of a Charged-Particle Beam ........... 642
        18.2.2 Self-Field for Particle Beams .................. 644
        18.2.3 Beam Beam Effect ............................... 647
        18.2.4 Transverse Self-Fields ......................... 649
        18.2.5 Fields from Image Charges ...................... 650
        18.2.6 Space-Charge Effects ........................... 655
        18.2.7 Longitudinal Space-Charge Field ................ 660
   18.3 Beam-Current Spectrum ................................. 662
        18.3.1 Longitudinal Beam Spectrum ..................... 662
        18.3.2 Transverse Beam Spectrum ....................... 665
        
19 Wake Fields and Instabilities .............................. 671
   19.1 Definitions of Wake Field and Impedance ............... 672
        19.1.1 Longitudinal Wake Fields ....................... 678
        19.1.2 Transverse Wake Fields ......................... 683
        19.1.3 Panofsky-Wcnzel Theorem ........................ 684
   19.2 Impedances in an Accelerator Environment .............. 685
        19.2.1 Space-Charge Impedance ......................... 686
        19.2.2 Resistive Wall Impedance ....................... 686
        19.2.3 Cavity-Like Structure Impedance ................ 687
        19.2.4 Overall Accelerator Impedance .................. 688
        19.2.5 Broad-Band wake Fields in a Linear
               Accelerator .................................... 691
   19.3 Coasting-Beam Instabilities ........................... 692
        19.3.1 Negative-Mass Instability ...................... 692
        19.3.2 Dispersion Relation ............................ 695
        19.3.3 Landau Damping ................................. 701
        19.3.4 Transverse Coasting-Beam Instability ........... 703
   19.4 Longitudinal Single-Bunch Effects ..................... 705
        19.4.1 Potential Well Distortion ...................... 705
   19.5 Transverse Single-Bunch Instabilities ................. 713
        19.5.1 Beam Break-up in Linear Accelerators ........... 713
        19.5.2 Fast Head-Tail Effect .......................... 715
        19.5.3 Head-Tail Instability .......................... 719
   19.6 Multibunch Instabilities .............................. 722

        Part VIII Synchrotron Radiation
        
20 Fundamental Processes ...................................... 731
   20.1 Radiation from Moving Charges ......................... 731
        20.1.1 Why Do Charged Particles Radiate? .............. 732
        20.1.2 Spontaneous Synchrotron Radiation .............. 733
        20.1.3 Stimulated Radiation ........................... 734
        20.1.4 Electron Beam .................................. 735
   20.2 Conservation Laws and Radiation ....................... 736
        20.2.1 Cherenkov Radiation ............................ 737
        20.2.2 Compton Radiation .............................. 738
   20.3 Electromagnetic Radiation ............................. 739
        20.3.1 Coulomb Regime ................................. 740
        20.3.2 Radiation Regime ............................... 741
        
21 Overview of Synchrotron Radiation .......................... 749
   21.1 Radiation Sources ..................................... 750
        21.1.1 Bending Magnet Radiation ....................... 750
        21.1.2 Superbends ..................................... 751
        21.1.3 Wavelength Shifter ............................. 752
        21.1.4 Wiggler Magnet Radiation ....................... 753
        21.1.5 Undulator Radiation ............................ 757
        21.1.6 Back Scattered Photons ......................... 763
   21.2 Radiation Power ....................................... 765
   21.3 Spectrum .............................................. 768
   21.4 Spatial Photon Distribution ........................... 773
   21.5 Fraunhofer Diffraction ................................ 775
   21.6 Spatial Coherence ..................................... 778
   21.7 Temporal Coherence .................................... 780
   21.8 Spectral Brightness ................................... 782
        21.8.1 Matching ....................................... 783
   21.9 Photon Source Parameters .............................. 785
        
22 Theory of Synchrotron Radiation ............................ 789
   22.1 Radiation Field ....................................... 789
   22.2 Total Radiation Power and Energy Loss ................. 796
        22.2.1 Transition Radiation ........................... 796
        22.2.2 Synchrotron Radiation Power .................... 799
   22.3 Spatial and Spectral Radiation Distribution ........... 802
        22.3.1 Radiation Lobes ................................ 802
        22.3.2 Synchrotron Radiation Spectrum ................. 807
   22.4 Radiation Field in the Frequency Domain ............... 807
        22.4.1 Spectral Distribution in Space and 
               Polarization ................................... 812
        22.4.2 Spectral and Spatial Photon Flux ............... 814
        22.4.3 Harmonic Representation ........................ 815
        22.4.4 Spatial Radiation Power Distribution ........... 816
   22.5 Asymptotic Solutions .................................. 818
        22.5.1 Low Frequencies and Small Observation Angles ... 818
        22.5.2 High Frequencies or Large Observation Angles ... 818
   22.6 Angle-Integrated Spectrum ............................. 819
   22.7 Statistical Radiation Parameters ...................... 825
        
23 Insertion Device Radiation ................................. 829
   23.1 Particle Dynamics in a Periodic Field Magnet .......... 831
   23.2 Undulator Radiation ................................... 833
        23.2.1 Fundamental Wavelength ......................... 833
        23.2.2 Radiation Power ................................ 834
        23.2.3 Spatial and Spectral Distribution .............. 835
        23.2.4 Line Spectrum .................................. 847
        23.2.5 Spectral Undulator Brightness .................. 851
   23.3 Elliptical Polarization ............................... 852
        23.3.1 Elliptical Polarization from Bending Magnet
               Radiation ...................................... 853
        23.3.2 Elliptical Polarization from Periodic
               Insertion Devices .............................. 855
        
24 Free Electron Lasers ....................................... 861
   24.1 Small Gain Regime ..................................... 862
        24.1.1 Energy Transfer ................................ 864
        24.1.2 Equation of Motion ............................. 866
        24.1.3 FEL-Gain ....................................... 868

Solutions ..................................................... 875

Part IX Appendices
       
Useful Mathematical Formulae .................................. 907
   A.l  Vector Algebra ........................................ 907
        A.1.1  Differential Vector Expressions ................ 907
        A.1.2  Algebraic Relations ............................ 908
        A.1.3  Differential Relations ......................... 909
        A.1.4  Integral Relations ............................. 909
        A.1.5  Series Expansions .............................. 909
        A.1.6  Fourier Transform .............................. 909
        A.1.7  Parceval's Theorem ............................. 910
        A.1.8  Coordinate Transformations ..................... 910
        
Physical Formulae and Parameters .............................. 913
   B.l  Physical Constants .................................... 913
   B.2  Relations of Fundamental Parameters ................... 914
   B.3  Unit Conversion ....................................... 914
   B.4  Maxwell's Equations ................................... 914
   B.5  Wave and Field Equations .............................. 915
   B.6  Relativistic Relations ................................ 916
        B.6.1  Lorentz Transformation ......................... 916
        B.6.2  Four-Vectors ................................... 917
        B.6.3  Square of the 4-acceleration ................... 918
        B.6.4  Miscellaneous 4-Vectors and Lorentz Invariant       
               Properties ..................................... 918
       
Transformation Matrices in Beam Dynamics ...................... 919
   C.l  General Transformation Matrix ......................... 920
        C.l.l  Symmetric Magnet Arrangement ................... 920
        C.l.2  Inverse Transformation Matrix .................. 920
   C.2  Specific Transformation Matrices ...................... 921
        C.2.1  Drift Space .................................... 921
        C.2.2  Bending Magnets ................................ 921
        C.2.3  Quadrupol ...................................... 923
        
References .................................................... 925
        
Index ......................................................... 917


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:19:28 2019. Размер: 33,627 bytes.
Посещение N 2774 c 27.01.2009